

openFinance API Framework

Implementation Guidelines

Protocol Functions and Security Measures

Version 2.1

31 July 2024

License Notice

This Specification has been prepared by the Participants of the openFinance Taskfoce*. This Specification is

published by the Berlin Group under the following license conditions:

• "Creative Commons Attribution-NoDerivatives 4.0 International Public License"

This means that the Specification can be copied and redistributed in any medium or format for any purpose,

even commercially, and when shared, that appropriate credit must be given, a link to the license must be

provided, and indicated if changes were made. You may do so in any reasonable manner, but not in any way

that suggests the licensor endorses you or your use. In addition, if you remix, transform, or build upon the

Specification, you may not distribute the modified Specification.

• Implementation of certain elements of this Specification may require licenses under third party intellectual

property rights, including without limitation, patent rights. The Berlin Group or any contributor to the

Specification is not, and shall not be held responsible in any manner for identifying or failing to identify any or

all such third party intellectual property rights.

• Any right, title and interest in and to the copyright and all related rights in topic-related Scheme Rulebooks,

belong to the respective Scheme Manager (amongst others, the European Payments Council AISBL - EPC).

• The Specification, including technical data, may be subject to export or import regulations in different countries.

Any user of the Specification agrees to comply strictly with all such regulations and acknowledges that it has

the responsibility to obtain licenses to export, re-export, or import (parts of) the Specification.

* The openFinance Taskforce brings together participants of the Berlin Group with additional European banks (ASPSPs), banking

associations, payment associations, payment schemes and interbank processors.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page i

 (ref. License Notice for full license conditions)

Contents

1 Introduction ... 1

1.1 From Core XS2A Interface to openFinance API 1

1.2 Protocol Functions supported by XS2A and openFinance API 3

1.3 Security Measures supported by XS2A and openFinance API 3

1.4 Document Structure ... 3

1.5 Document History .. 5

2 Character Sets and Notations ... 7

2.1 Character Set and Data Types .. 7

2.2 Notation ... 8

2.2.3 Notations used for Requests as well as Responses 9

2.2.4 Base64 Notations ... 10

2.2.5 Notion of a Transaction .. 10

2.2.6 Notation for Access Methods ... 11

3 REST API Approach: Guiding Principles .. 12

3.1 Location of Message Parameters .. 12

3.2 API Structure ... 13

3.3 API Versioning ... 15

3.4 API Request Header Parameter .. 15

3.4.1 Transaction Initiation Request Headers 15

3.4.2 Client Brand Information Header .. 16

3.4.3 Signature related headers .. 16

3.4.4 Technical headers .. 16

3.5 Header Parameters for Idempotency ... 17

3.6 API Steering Process by Hyperlinks (HATEOAS) 17

3.7 Links in Transaction Initiation Response .. 20

3.8 HTTP Response Codes ... 22

3.9 Data Extensions by the ASPSP ... 23

3.10 Multicurrency Accounts ... 24

3.11 Interval Borders Including Rules .. 24

4 Error Handling .. 25

4.1 Responses in Error Cases ... 25

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page ii

 (ref. License Notice for full license conditions)

4.1.1 Header ... 25

4.1.2 Body .. 25

4.2 Additional Error Information ... 25

4.2.1 openFinance API Framework Specific Solution 25

4.2.2 Standardised Additional Error Information 27

5 Authentication of API Client and ASPSP at transport layer 30

5.1 TLS-secured connection established by API Client........................ 30

5.2 TLS-secured connection established by ASPSP 31

5.3 Certificate Requirements on Redirect URIs 32

6 Signing HTTP request messages at the application level 33

6.1 Certificates to be used ... 33

6.2 Signing HTTP messages based on [RFC7515] 34

6.2.1 Extensions to the HTTP message 34

6.2.2 How to build the extensions? ... 35

6.2.3 Example ... 40

7 Security measures for securing (parts of) the message body 46

7.1 Signing the body .. 46

7.1.1 Extension to the http message ... 47

7.1.2 Signing the body using JAdES_JS 48

7.1.3 Signing the body using XAdES... 48

7.1.4 Signing the body using EMV_AC 52

7.2 Encryption of (parts of) the body .. 52

7.2.1 Overview .. 53

7.2.2 Extension to the http message ... 54

7.2.3 How to build a JWE .. 55

7.2.4 How to build an EncryptedBody or EncryptedElementTag

element .. 58

7.2.5 Exchange of certificates with public encryption keys 60

8 Strong customer authentication of a PSU ... 62

8.1 Optional Usage of OAuth2 for PSU Authentication or Authorisation

 .. 62

8.2 Header Parameter for PSU Context Data 63

8.3 Header Parameters for PSU Identification Data 64

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page iii

 (ref. License Notice for full license conditions)

8.4 Header Parameters for strong customer authentication 66

8.4.1 Request Header Parameters Steering SCA Approaches ... 66

8.4.2 Related Response Headers ... 67

8.5 Embedded SCA Approach ... 67

8.6 Decoupled SCA Approach ... 67

8.7 Redirect SCA Approach .. 68

8.8 OAuth SCA Approach .. 68

8.8.1 Authorization Request .. 69

8.8.2 Authorization Response ... 71

8.8.3 Access Token Request .. 71

8.8.4 Access Token Response.. 72

8.8.5 Refresh Token Grant Type ... 73

8.8.6 API Requests ... 73

8.9 ASPSP Channel SCA Approach .. 73

9 Authorisation Processes used commonly in all Services 75

9.1 Authorisation Endpoints ... 75

9.2 Transaction Cancellation Endpoints e.g. for Payments 78

9.3 Access Methods for Authorisations .. 79

9.4 Start Authorisation Process ... 81

9.4.1 Update PSU Data .. 90

9.4.2 Update PSU Data (Identification) 91

9.4.3 Update PSU Data (Authentication) in the Decoupled or

Embedded Approach ... 95

9.4.4 Update PSU Data (Select Authentication Method) 100

9.5 Transaction Authorisation .. 105

9.6 Get Authorisation Sub-Resources Request 108

9.7 GET Authorisation Status Request .. 110

9.8 Confirmation Request Procedure ... 113

9.8.1 Confirmation Request Flow Examples for Payment Initiation

... 113

9.8.2 Retrieving the Confirmation Code in Redirect SCA approach

... 115

9.8.3 Confirmation Request Message Pre-Condition 118

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page iv

 (ref. License Notice for full license conditions)

9.8.4 Authorisation Confirmation Request Message 118

9.9 Update Resource with Debtor Account .. 121

10 Signing Baskets .. 125

10.1 Access Methods for Signing Baskets ... 125

10.2 Establish Signing Basket Request ... 125

10.3 Get Signing Basket Request .. 129

10.4 Get Signing Basket Status Request ... 131

10.5 Cancellation of Signing Baskets .. 133

11 Resource Status Notification .. 135

11.1 API Access Methods ... 135

11.2 HTTP Response Codes for Notifications 136

11.3 Implicit Subscription for Resource Status Notification 136

11.4 Communicate Notification URI of API Clients to the ASPSP 137

11.5 Resource Status Notification Message Flow 140

11.6 Push Resource Status with JSON encoding 140

12 Annex ... 145

12.1 List of tables .. 145

12.2 References .. 145

12.2.1 Documents of the NextGenPSD2 XS2A Framework 145

12.2.2 Documents of the openFinance API Framework 145

12.2.3 Further documents ... 145

12.3 Detailed Change Log ... 148

12.3.1 Changes from Version 2.0 to 2.1 148

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 1

 (ref. License Notice for full license conditions)

1 Introduction

1.1 From Core XS2A Interface to openFinance API

With [PSD2] the European Union has published a directive on payment services in the internal

market. Among others [PSD2] contains regulations on services to be operated by socalled

Third Party Payment Service Providers (TPP) on behalf of a Payment Service User (PSU).

These services are

• Payment Initiation Service (PIS) to be operated by a Payment Initiation Service

Provider (PISP) TPP as defined by article 66 of [PSD2],

• Account Information Service (AIS) to be operated by an Account Information

Service Provider (AISP) TPP as defined by article 67 of [PSD2], and

• Confirmation on the Availability of Funds Service (FCS) to be used by a Payment

Instrument Issuing Service Provider (PIISP) TPP as defined by article 65 of [PSD2].

To implement these services (subject to PSU consent) a TPP needs to access the account of

the PSU. The account is managed by another PSP called the Account Servicing Payment

Service Provider (ASPSP). To support the TPP in accessing the accounts managed by an

ASPSP, each ASPSP has to provide an "access to account interface" (XS2A interface). Such

an interface has been defined in the Berlin Group NextGenPSD2 XS2A Framework.

This XS2A Framework now has been opened up to extended services. This interface is

addressed in the following as openFinance API. This openFinance API differs from the XS2A

interface in several dimensions:

• The extended services might not rely anymore solely on PSD2.

• Other important regulatory frameworks which apply are e.g. GDPR.

• The openFinance API can address different types of API Clients as access clients,

e.g. TPPs regulated by an NCA according to PSD2, or corporates not regulated by

an NCA.

• The extended services might require contracts between the access client and the

ASPSP.

• While the client identification at the openFinance API can still be based on eIDAS

certificates, they do not need to be necessarily PSD2 compliant eIDAS certificates.

• The extended services might require e.g. the direct involvement of the access

client's bank for KYC processes.

Note: The notions of API Client and ASPSP are used because of the technical standardisation

perspective of the openFinance API. These terms are analogous to "asset broker" and "asset

holder" resp. in the work of the ERPB on a SEPA API access scheme.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 2

 (ref. License Notice for full license conditions)

Note: In implementations, the API services of several ASPSPs might be provided on an

aggregation platform. Such platforms will be addressed in the openFinance API Framework

as "API provider".

Note: At some places, the openFinance API Framework is still using the technical TPP notion

also for the openFinance APIs, e.g. in redirection related header parameters. In this context,

the TPP is not necessarily a licensed TPP as mentioned above, but for certain services may

just be any "third party provider".

The following account access methods are covered by this framework:

Figure 1: Core XS2A interface and openFinance API

The ASPSP may restrict the access to the services offered at its openFinance API and require

dedicated onboarding. The requirements for the rights to access to services offered at the

openFinance API are out of scope of this document. These requirements are in detail in [oFA-

IG-ADM].

In contrast to the services of the openFinance API the ASPSP has to offer access to the

services of his core XS2A API to any TPP without any discrimination as long as the TPP has

got the necessary licence to access a service as a PISP, AISP or PIISP from an NCA

according to the regulations of [PSD2].

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 3

 (ref. License Notice for full license conditions)

1.2 Protocol Functions supported by XS2A and openFinance API

The addressed services within the XS2A API and the openFInance API share many protocol

functions. Such functions are defined in this Framework document and cover e.g.

• dynamic protocol steering by hyperlinks,

• how to address transaction authorisation resource,

• how to push resource status changes to API clients or

• how to handle protocol preferences of the API Clients.

Such generic protocol functions are explained only within this document. Service

specifications using these functions then just refer to this openFinance API Framework

documentation for better readability. For better readability, the document refers in most parts

to the openFinance API Framework only instead of addressing both, the XS2A API and the

openFinance API. Where needed, the two APIs are addressed separately.

1.3 Security Measures supported by XS2A and openFinance API

Specific API protocol functions are security measures to be supported by an API. XS2A and

openFinance API according to the specifications of the Berlin Group support different security

measures and approaches for the authentication of a PSU. Examples are the authentication

of an API Client either at the transport level or the support of different approaches for the

execution of a strong customer authentication of a PSU.

Some of these security measures and approaches for PSU authentication have to be

supported by an API mandatorily, for other the support is an option for the ASPSP. In any

case an API Client has to secure his access to an XS2A or openFinance API by a security

measure or has to use a special approach for PSU authentication if requested by an ASPSP.

This document describes how different security measures and approaches for PSU

authentication are supported by an XS2A or openFinance API. For each it is defined if the

support at an XS2A API and/or at an openFinance API is mandatory (i.e. has to be supported

by each ASPSP) or optional (i.e. the ASPSP can decide to support it or not). If special

restrictions for values, parameters, variants, etc. for the support of a security measure exist,

these are also described.

Please notice that this document contains only the specification of how security measures are

supported by an API, but not the specification of the security measures itself.

1.4 Document Structure

This document specifies the Protocol Functions and Security Measures supported by an XS2A

or openFinance API (if based on one of the Berlin Group specifications) in detail. It has to be

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 4

 (ref. License Notice for full license conditions)

considered in combination with any other Implementation Guidelines published by the Berlin

Group. This document defines the following building bricks:

• Character sets and primitive data types supported by all services in Section 2.1

• Notations used within all services definitions and in the openFinance API

Framework documentation in Section 2.2

• REST API principles within the openFinance API Framework in Section 3

• Error handling in Section 4

• Authentication of API Clients and ASPSP at transport layer in Section 5

• Signing messages on application layer in Section 6

• Signing message bodies in Section 7.1

• Encryption of message bodies in Section 7.2

• SCA Approaches supported in Section 8

• Authorisation processes supported in Section 9

• Signing basket function to group transactions for authorisation in Section 10

• Resource status notification function (formerly called Lean Push Service) in

Section 11

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 5

 (ref. License Notice for full license conditions)

This document fits into the overall structure of the documentation as follows:

Protocol
Functions and

Security
Measures

Compliance
Services
XS2A API

OR, IGs and
yaml

Premium
Payments

OR, IG
and yaml

Premium
AIS

OR, IG
and yaml

RTP
Services

OR, IG and
yaml

API Management
Functions like
Discovery API,
Onboarding

Data Dictionary
for

Compliance and
Premium Services

Payment and
Transaction

Formats
(ISO20022)

Consent API
IG and yaml

Basic Framework
Documents

Service
Documents

Guide to the
openFinance

API galaxy
Introductory
Document

PUSH AIS
Services

OR, IG and
yaml

Document
Services

OR, IG and
yaml

1.5 Document History

Version Change/Note Approved

Version 2.0 Initial Version of the openFInance API

Framework documentation.

2023-10-5 openFinance TF

Version 2.1 Enhancing the Framwork by the SCA

approach "ASPSP-Channels" when using

asynchronous SCA procedures via e.g. the

ASPSP online channels.

Renaming some authorisation related HTTP

headers to prepare the API Framework for

direct access for corporates.

Extending the embedded and decoupled SCA

approach by an option to add the debtor

account during the authorisation process, via

an account selection process.

Extending message signing routines by

headers protecting the resources addressed.

Errata and clarifications.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 6

 (ref. License Notice for full license conditions)

Version Change/Note Approved

Details are covered in the Annex of this

document.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 7

 (ref. License Notice for full license conditions)

2 Character Sets and Notations

This section introduces character sets and notations used throughout the openFinance API

Framework.

2.1 Character Set and Data Types

HTPP body parameters

The character set within the openFinance API Framework for parameters transported in HTTP

bodies is UTF 8 encoded. This specification is only using the basic data elements "String",

"Boolean", "ISODateTime", "ISODate", "UUID" and "Integer" (with a byte length of 32 bits) and

ISO based code lists. For codes defined by ISO, a reference to the corresponding ISO

standard is given on service specification or data dictionary level.

Max35Text, Max70Text, Max140Text Max500Text, Max1000Text, Max2000Text are defining

strings with a maximum length of 35, 70, 140, 500, 1000 and 2000 characters respectively.

ASPSPs will accept for strings at least the following character set:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

/ - ? : () . , ' +

Space

ASPSPs may accept further character sets for text fields like names, addresses, text.

Corresponding information will be contained in the ASPSP documentation of the related

service. ASPSPs might convert certain special characters of these further character sets,

before forwarding e.g. submitted payment data.

Complex data types and code lists are defined in the data dictionary [oFA DD] or in related

service specifications.

HTTP query and header parameters

Encoding follows the HTTP specification. Specific additions might be provided for HTTP

parameters introduced specifically by this specification.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 8

 (ref. License Notice for full license conditions)

2.2 Notation

2.2.1 Notation for Requests

For API request calls, query parameters, HTTP header parameters and body content

parameters are specified within this openFinance API Framework as follows:

Attribute Type Condition Description

attribute tag type of

attribute

condition description of the semantic of the attribute and

further conditions.

The "Type" is referring to either basic or complex data types as introduced in Section 2.1.

The following conditions may be used when describing data to be submitted by the client:

• Optional: The attribute is supported by the server, usage is optional for the client.

The server may ignore the parameter if mentioned in the “Description” column of

the table above.

• Conditional: The attribute is supported by the server and might be mandated by

▪ the server provider in its own documentation of the support of the related

API or

▪ by certain rules as defined in the “Description” column of the table above.

• Mandatory: The attribute is supported by the server and shall be used by the client.

• Optional if supported by API provider: It is optional for the server to support this

attribute. If the server is supporting the attribute as indicated in its own

documentation of the related service, it might be used by the client optionally. If the

server is not supporting the attribute, then the request is rejected when it is

contained.

Remark: Please note that the conditions “Optional if supported by API provider” is used rarely

in the openFinance API Framework.

2.2.2 Notation for Responses

For API call responses, parameters, HTTP header parameters and body content parameters

are specified within the openFinance API Framework as follows:

Attribute Type Condition Description

attribute tag type of

attribute

condition description of the semantic of the attribute and

further conditions.

The "Type" is referring to either basic or complex data types as introduced in Section 2.1.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 9

 (ref. License Notice for full license conditions)

The following conditions can be set on data to be provided by the server:

• Optional: The attribute is supported optionally by the server

• Conditional: The attribute is supported by the server under certain conditions as

indicated in the “Description” column of the table above.

• Mandatory: The attribute is always supported by the server.

2.2.3 Notations used for Requests as well as Responses

The following additional conditions apply to both, requests from the client to the server as well

as responses from the server to the client:

Attribute Type Condition Description

 {Or

 Or

 Or}

 {Or – Optional

 Or – Optional

 Or – Optional}

• {Or: The first element in a sequence of elements of which exactly one has to be

included.

• Or: An element in a sequence of elements of which exactly one has to be included.

The element is neither the first nor the last within this sequence.

• Or}: The last element in a sequence of elements of which exactly one has to be

included.

• {Or – Optional: The first element in a sequence of elements of which at most one

may be included.

• Or – Optional: An element in a sequence of elements of which at most one may

be included. The element is neither the first nor the last within this sequence.

• Or – Optional}: The last element in a sequence of elements of which at most one

may be included.

Note: Specifications for the openFinance API are accompanied by an openAPI interface

description (as a yaml file). Within these openAPI descripitions, elements with conditions "{Or",

"Or", "Or}", "{Or – Optional", "Or – Optional", "Or – Optional}" will be treated as (pure) optional

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 10

 (ref. License Notice for full license conditions)

elements at the moment. It is the responsibility of the implementer to ensure the additional

checks.

2.2.4 Base64 Notations

Base64 encoding:

Base64 encoding according to [RFC4648].

Base64url encoding:

According to [RFC7515] base64 encoding using the URL- and filename-safe character

set defined in Section 5 of [RFC4648], with all trailing '=' characters omitted (as

permitted by Section 3.2) and without the inclusion of any line breaks, whitespace, or

other additional characters. Note that the base64url encoding of the empty octet

sequence is the empty string. (See Appendix C of [RFC7515] for notes on

implementing base64url encoding without padding.)

2.2.5 Notion of a Transaction

Transaction is used in two different contexts within this document respectively the

openFinance API Framework:

• "Transaction" as meta description of a service interaction with the API to simplify

the definitions in this document:

▪ The notion of a transaction subsumes service interactions like payment

initiation, consents for API interaction, subscriptions or signing baskets.

▪ Such transactions are started by the API Client with a related initiation

request, called throughout this document "Transaction Initiation

Request", e.g. a

• Payment Initiation Request,

• Establish Consent Request,

• Establish Signing Basket Request, or

• Initiate Subscription Request.

▪ The response to these initiations by the ASPSP is called "Transaction

Initiation Response" throughout this document.

▪ Transactions need normally to be authorised by the PSU by applying a

Strong Customer Authentication (SCA).

▪ Where transaction data is posted to the API, a related resource is

created.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 11

 (ref. License Notice for full license conditions)

• Transaction as a banking transaction on an account:

▪ Entries on an account are also addressed as transactions.

2.2.6 Notation for Access Methods

All service definitions in the openFinance API Framework will come with an overview on the

http access methods supported.

These access methods are denoted by the following tables:

Endpoints Method Condition Description

service-endpoint POST or GET

or PUT or

DELETE

Mandatory or

Optional or

Conditional

Description and reference to the

section, where the related access

point is

The following definitions apply for such tables throughout the openFinance API Framework

documentation:

• Endpoints: This is the endpoint name.

• Method: This is the HTTP method to be applied. The HTTP methods POST; GET

PUT and Delete are supported.

• Condition: The condition defines the condition for the ASPSP.

▪ Mandatory: The access method shall be provided by the ASPSP

▪ Optional: The access method may be provided by the ASPSP

▪ Conditional: The access method shall be provided given certain

conditions defined in the Description column.

Please note that the condition is given relative to the parent node of the

path, i.e. the condition e.g. on a method on /service-endpoint/{resourceId}

applies only if the endpoint /service-enpoint is supported at all.

• Description: Gives an overview on the method and potentially conditions for the

method as well as a reference to the section in the document, where the method

is described in detail.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 12

 (ref. License Notice for full license conditions)

3 REST API Approach: Guiding Principles

This section introduces some basic technical rules on how to implement the REST API

approach within the openFinance API Framework.

3.1 Location of Message Parameters

The openFinance API Framework definitions follow the REST service approach. This

approach allows to transport message parameters at different levels:

• message parameters as part of the HTTP level (HTTP header)

• message parameters by defining the resource path (URL path information) with

additional query parameters and

• message parameters as part of the HTTP body.

The content parameters in the corresponding HTTP body will be encoded either in JSON or

in XML syntax. XML syntax is only used where

• an ISO 20022 based payment initiation (pain.001 message) with the corresponding

payment initiation report (pain.002 message) or

• ISO 20022 based account information message (camt.052, camt.053 or camt.054

message)

is contained.

As an exception, response messages might contain plain text format in account information

messages to support MT940, MT941 or MT942 message formats related to transaction

reports.

The parameters are encoded

• in spinal-case (small letters) on path level,

• in spinal-case (starting capital letters) on HTTP header level and

• in lowerCamelCase for query parameters and JSON based content parameters.

The following principle is applied when defining the API:

Message parameters as part of the HTTP header:

• Definition of the content syntax,

• Certificate and Signature Data where needed,

• PSU identification data (the actual data from the online banking frontend or access

token),

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 13

 (ref. License Notice for full license conditions)

• Protocol level data like Request Timestamps, Request/Transaction Identifiers or

protocol preferences of the API Client.

Message parameters as part of the path level:

• All data addressing a resource:

▪ Provider identification,

▪ Service identification,

▪ Payment product identification,

▪ Account Information subtype identification,

▪ Resource ID

Query Parameters:

• Additional information needed to process the GET request for filtering information,

Message parameters as part of the HTTP body:

• Business data content,

• PSU authentication data,

• Messaging Information

• Hyperlinks to steer the full TPP – ASPSP process

3.2 API Structure

The XS2A Interface resp. openFinance API is resource oriented. Resources can be addressed

under the API endpoints

https://{provider}/v2/{service}{?query-parameters}

using additional content parameters {parameters}

where

• {provider} is the host and path of the related API, which is not further mentioned.

The host or path may contain release version information of the ASPSP.

• v2 is denoting the final version 2.x of the related implementation guidelines within

the openFinance API Framework.

 NOTE: The addressed exact version of the Implementation Guidelines of the

addressed service will be provided in a dedicated response header, cp. Section 3.3.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 14

 (ref. License Notice for full license conditions)

• {service} has the values consents, payments, bulk-payments, periodic-payments,

accounts, card-accounts, signing-baskets or funds-confirmations for the XS2A

Interface eventually extended by more information on product types like resource

identification and request scope. For the openFinance API, more services are

offered as provided in the extended service specifications of the openFinance API

Framework.

Remark: It is strongly recommended that the related resourceId for identifying a

dedicated resource is a UUID.

• {?query-parameters} are parameters detailing GET based access methods, e.g.

for filtering content data

• {parameters} are content attributes defined in JSON or XML and transported in the

http body encoding according to the following

▪ XML encoding appears only when ISO 20022 pain.001 messages are

transported when demanded by the ASPSP for the corresponding payment

product

▪ all other request bodies are encoded in JSON

Resources

The structure of the request/response is described according to the following categories

• Path: Attributes encoded in the Path, e.g. "payments/sepa-credit-transfers" for

{resource}

• Query Parameters: Attributes added to the path after the "?" sign as process

steering flags or filtering attributes for GET access methods. Query parameters of

type Boolean shall always be used in a form query-parameter=true or query-

parameter=false.

• Header: Attributes encoded in the HTTP header of request or response

• Request: Attributes within the content parameter set of the request

• Response: Attributes within the content parameter set of the response, defined in

XML, text or JSON:

▪ XML encoding appears only, when camt.052, camt.053 or camt.054

messages (reports, notifications or account statements) or pain.002

payment status messages are transported. pain.002 messages will only be

delivered for the GET Status Request, and only in cases where the payment

initiation was performed by using pain.001 messages.

▪ Text encoding appears only, when MT940, MT941 or MT942 messages

(reports, notifications or account statements) are transported.

▪ All other response bodies are encoded in JSON.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 15

 (ref. License Notice for full license conditions)

The HTTP response codes which might be used in the openFinance API Framework are

specified in Section 3.8. This is not repeated for every API call definition.

Remark: For JSON based responses, this specification defines body attributes which

are responded from ASPSP to API Clients following POST or PUT API calls. The

ASPSP is free to return the whole addressed resource within the response, following

usual REST methodologies.

3.3 API Versioning

For calls on a dedicated service, the ASPSP might use the following HTTP header in

responses:

Attribute Type Condition Description

X-Reference-API-

Name

String Optional "Berlin Group openFinance API"

X-Reference-API-

Document

String Optional The name of the Implementation Guideline

document, where the service is based on, e.g.

"Extended Payment Initiation Services".

X-Reference-API-

Version

String Optional This is the exact version number of the

openFinance API Framework Implementation

Guidelines of the related service which is

implemented, e.g. "2.1.3".

Note: The usage of these header is recommended to use at least on root endpoints for an

addressed service. It should be used independently of the http response code.

3.4 API Request Header Parameter

The following headers are defined generically within this document and will be instantiated to

service definitions explicitly only via the related OpenAPI files. Such lean documentation is

intended to enhance the readability of the service definitions.

3.4.1 Transaction Initiation Request Headers

Transaction Initiation Request messages (cp. Section 2.2.5 for a definition) are specific within

the openFinance API Framework. These initiation messages for a business transaction not

only transport business related information, but also context data and data steering the usage

of openFinance API Framework functions. These headers are defined within this document

and will be instantiated to service definitions explicitly only via the related OpenAPI files. Such

lean documentation is intended to enhance the readability of the service definitions.

The openFinance API Framework foresees the following header parameters for Transaction

Initiation Request messages

• PSU context data, cp. Section 8.2

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 16

 (ref. License Notice for full license conditions)

• PSU identification data, cp. Section 8.3

• SCA Approach Preferences, cp. Section 8.4

• API Client Notification data, cp. Section 11

• Client Brand Information Header, see Section 3.4.2

The usage of the headers mentioned above might lead to the usage of specific header

parameters in the Transaction Initiation Response, as defined in the sections above.

The same headers (besides the Client Brand Information Header) also apply to Payment

Cancellation Request messages.

3.4.2 Client Brand Information Header

The following header may be used within all Transaction Initiation Requests:

Attribute Type Condition Description

Client-Brand-

Logging-

Information

String Optional This header might be used by API Clients to inform

the ASPSP about the brand used by the API Client

towards the PSU. This information is meant for

logging entries to enhance communication between

ASPSP and PSU or ASPSP and API Client.

This header might be ignored by the ASPSP.

3.4.3 Signature related headers

In addition, the following header parameters might be used in all API request headers, where

applicable:

• Signature related headers, cp. Section 6

3.4.4 Technical headers

The http requests come with certain technical headers, which are not specifically addressed

in this specification. One of these headers is the "date" header which is typically added

automatically on http protocol level by the API Client system.

Please further note that the http message signing procedure defined in Section 6 specifies a

dedicated timestamp for the openFinance API Framework which is protected itself by signing.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 17

 (ref. License Notice for full license conditions)

3.5 Header Parameters for Idempotency

All requests and responses in this API framework come with the unique X-Request-Id, a UUID

in requests and responses. The X-Request-Id in the response equals the X-Request-Id in the

related request.

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

The uniqueness implies the following:

A request B with the same X-Request-Id as request A should be responded as follows to

achieve idempotency:

• If the business content of request B (e.g. path, query parameters, body and

headers defined in this specification) equals the business content of request A and

if the time deviation is not too high (implementation/request specific) and if

potentially the internal state of the related resource has not changed in the

meantime: The response message from the server to request B then also should

equal the response message to request A.

• Otherwise the requested message should be rejected with a 40x response code.

3.6 API Steering Process by Hyperlinks (HATEOAS)

The services defined within the openFinance API Framework require several requests from

the API Client towards the ASPSP. With the Transaction Initiation Request specified in each

service, a resource presentation is generated by the ASPSP for the related business

transaction, e.g. a payment resource or a consent resource for AIS access. The location

header of the response will usually contain a link to the created resource.

In addition, the ASPSP can embed a hyperlink together with a "tag" for the semantics of this

hyperlink into the response to these first requests and to all succeeding requests within the

services. This hyperlink must be a URI reference as defined in [RFC3986] and can be either

a relative link, which is recommend to save space, for the host starting e.g. with

"/psd2/v2/payments/sepa-credit-transfers" or it can be a global link like

https://www.testbank.com/psd2/v2/payments/sepa-credit-transfers/asdf-asdf-asdf-1234.

The global links might be needed in some circumstances, e.g. a re-direct. The tag of the

hyperlink transports the functionality of the resource addressed by the link, e.g. "authorise-

transaction". This link indicates that results of a SCA method are to be posted to the resource

addressed by this link to authorise e.g. a payment.

The steering hyperlinks are transported in the "_links" data element of type Link, cp. the related

data dictionary. It may contain one or several hyperlinks. Services might define additional

https://www.testbank.com/psd2/v2/payments/sepa-credit-transfers/asdf-asdf-asdf-1234

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 18

 (ref. License Notice for full license conditions)

hyperlinks before they are integrated mid-term to the overall data dictionary within the

openFinance API Framework maintenance.

The "_links" data element may contain more hyperlinks than specified in the related call. In

this case, this will be documented in the ASPSP's API documentation or the hyperlinks can

be ignored by the API Client.

Some hyperlinks might require additional data in the same response body which are then

needed when following this hyperlink. The following table gives an overview on these specific

steering hyperlinks to explain interconnection with the data elements.

Hyperlink Additional Link

Related Data

Description

startAuthorisationWith

PsuAuthentication

(challengeData) The link to an endpoint where the

authorisation of a transaction or of a

transaction cancellation shall be

started, where PSU authentication data

shall be uploaded with the

corresponding call.

Remark: In rare cases the ASPSP will

ask only for some dedicated ciphers of

the passwords. This information is then

transported to the TPP by using the

"challenge" data element, normally

used only in SCA context.

startAuthorisationWith

EncryptedPsuAuthentication

(challengeData) Same as startAuthorisactionWith

PsuAuthentication, but password is

encrypted on application layer when

uploaded.

updatePsuAuthentication (challengeData) The link to the authorisation sub

resource, which needs to be updated

by a PSU password and eventually the

PSU identification if not delivered yet.

Remark: In rare cases the ASPSP will

ask only for some dedicated ciphers of

the passwords. This information is then

transported to the TPP by using the

"challenge" data element, normally

used only in SCA context.

updateEncryptedPsu

Authentication

(challengeData) Same as updatePsuAuthentication, but

password is encrypted on application

layer when uploaded.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 19

 (ref. License Notice for full license conditions)

Hyperlink Additional Link

Related Data

Description

startAuthorisationWith

AuthenticationMethodSelection

scaMethods This is a link to and endpoint where the

authorisation of a transaction or of a

transaction cancellation shall be

started, where the selected SCA

method shall be uploaded with the

corresponding call.

selectAuthenticationMethod scaMethods This is a link to a resource, where the

TPP can select the applicable strong

customer authentication methods for

the PSU, if there were several available

authentication methods.

authoriseTransaction challengeData,

chosenScaMethod

A link to the resource, where a

"Transaction Authorisation Request"

can be sent to. This request transports

the result of the SCA method

performed by the customer, generating

a response to the challenge data.

startAuthorisationWith

TransactionAuthorisation

challengeData,

chosenSCAMethod

A link to an endpoint, where an

authorisation of a transaction or a

cancellation can be started, and where

the response data for the challenge is

uploaded in the same call for the

transaction authorisation or transaction

cancellation at the same time in the

Embedded SCA Approach.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 20

 (ref. License Notice for full license conditions)

3.7 Links in Transaction Initiation Response

The Transaction Initiation Response message may contain many hyperlinks to indicate the

next steps to be taken to authorise the transaction. These hyperlinks are independent of the

actual transaction initiated. This is why they are defined once here generically and are not

repeated on Implementation Guideline level, but only in related Open API files. The same

applies to response messages of other transactions which might require authorisation, e.g. a

Payment Cancellation Request.

Attribute Type Condition Description

_links

Links Mandatory A list of hyperlinks to be recognised by the API

Client. The actual hyperlinks used in the response

depend on the dynamical decisions of the ASPSP

when processing the request.

Remark: All links can be relative or full links, to be

decided by the ASPSP.

Type of links admitted in this response, (further links

might be added for ASPSP defined extensions):

"scaRedirect": In case of an SCA Redirect

Approach, the ASPSP is transmitting the link to

which to redirect the PSU browser.

 "startAuthorisationWithPsuIdentification":

The link to the authorisation end-point, where the

authorisation sub-resource has to be generated

while uploading the PSU identification data.

"startAuthorisationWithPsuAuthentication":

The link to the authorisation end-point, where the

authorisation sub-resource has to be generated

while uploading the PSU authentication data.

"startAuthorisationWithEncryptedPsuAuthenticatio

n":

Same as

startAuthorisactionWithPsuAuthentication, but the

authentication data need to be encrypted on

application level while uploading.

 "startAuthorisationWithAuthentication

MethodSelection":

The link to the authorisation end-point, where the

authorisation sub-resource has to be generated

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 21

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

while selecting the authentication method. This link

is contained under exactly the same conditions as

the data element "scaMethods"

 "startAuthorisationWithTransactionAuthorisation":

The link to the authorisation end-point, where the

authorisation sub-resource has to be generated

while authorising the transaction e.g. by uploading

an OTP received by SMS.

 "self": The link to the transaction initiation resource

created by this request. This link can be used to

retrieve the resource data.

"status": The link to retrieve the transaction status

of the transaction initiated.

"scaStatus": The link to retrieve the scaStatus of the

corresponding authorisation sub-resource. This link

is only contained, if an authorisation sub-resource

has been already created.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 22

 (ref. License Notice for full license conditions)

3.8 HTTP Response Codes

The HTTP response code is communicating the success or failure of an API Client request

message. The 4XX HTTP response codes should only be given if the current request cannot

be fulfilled, e.g. a payment initiation cannot be posted or account transactions cannot be

retrieved. For further details on error handling cp. Section 4. A request to get the status of a

transaction usually returns HTTP response code 200 since the actual request to retrieve the

status succeeded, regardless if that transaction state is set to failure or not.

The openFinance API Framework supports the following HTTP response codes:

Status Code Description

200 OK PUT, GET Response Codes

This return code is permitted if a request was repeated due to a time-

out. The response in that might be either a 200 or 201 code depending

on the ASPSP implementation.

The POST for a Funds request will also return 200 since it does not

create a new resource.

DELETE Response Code where a payment resource has been

cancelled successfully and no further cancellation authorisation is

required.

201 Created POST response code where a Transaction Request was correctly

performed and a related resource was created, which is addressable

further on by the API Client.

202 Accepted DELETE response code, where a transaction resource, e.g. a payment

resource can be cancelled in general, but where a cancellation

authorisation is needed in addition.

204 No Content DELETE response code where a transaction resource, e.g. a consent

resource was successfully deleted. The code indicates that the request

was performed, but no content was returned.

400 Bad Request Validation error occurred. This code will cover malformed syntax in

request or incorrect data in payload.

401 Unauthorized The TPP or the PSU is not correctly authorized to perform the request.

Retry the request with correct authentication information.

403 Forbidden Returned if the resource that was referenced in the path exists but

cannot be accessed by the API Client or the PSU. This code should only

be used for non-sensitive id references as it will reveal that the resource

exists even though it cannot be accessed.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 23

 (ref. License Notice for full license conditions)

Status Code Description

404 Not found Returned if the resource or endpoint that was referenced in the path

does not exist or cannot be referenced by the API Client or the PSU.

When in doubt if a specific id in the path is sensitive or not, use the HTTP

response code 404 instead of the HTTP response code 403.

405 Method Not Allowed This code is only sent when the HTTP method (PUT, POST, DELETE,

GET etc.) is not supported on a specific endpoint. It has nothing to do

with the related transaction data model.

DELETE Response code in case of cancellation of a transaction

resource, e.g. a payment resource, where the related transaction, e.g. a

payment initiation cannot be cancelled due to legal or other operational

reasons.

406 Not Acceptable The ASPSP cannot generate the content that the API Client specified in

the accept header.

408 Request Timeout The server is still working correctly, but an individual request has timed

out.

409 Conflict The request could not be completed due to a conflict with the current

state of the target resource.

415 Unsupported Media

Type

The API Client has supplied a media type which the ASPSP does not

support.

429 Too Many Requests The API Client has exceeded the number of requests allowed by the

consent or by the RTS.

500 Internal Server Error Internal server error occurred.

503 Service Unavailable The ASPSP server is currently unavailable. Generally, this is a

temporary state.

3.9 Data Extensions by the ASPSP

The ASPSP might add more data attributes to response messages. Such extensions then

shall be documented in the ASPSP’s documentation of its XS2A interface. These data

attributes can be either ignored by the API Client or can be interpreted as defined by the above

mentioned documentation.

The ASPSP might add additional optional data attributes to be submitted, e.g. for setting up

additional services. In addition, an ASPSP can ask the API Client for a submission of

proprietary data in a second step via the "proprietaryData" hyperlink. This shall be published

by the ASPSP in its documentation.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 24

 (ref. License Notice for full license conditions)

Remark: Before defining these additional proprietary data elements, the ASPSP is

requested to submit the attribute description to the Berlin Group openFinance

Taskforce, where it will be decided on a standardised approach for the related data

attributes.

3.10 Multicurrency Accounts

Definition: A multicurrency account is an account which is a collection of different sub-

accounts which are all addressed by the same account identifier like an IBAN by e.g. payment

initiating parties. The sub-accounts are legally different accounts and they all differ in their

currency, balances and transactions. An account identifier like an IBAN together with a

currency always addresses uniquely a sub-account of a multicurrency account.

This specification supports to address multicurrency accounts either on collection or on sub-

account level. The currency data attribute in the corresponding data structure "Account

Reference" allows to build structures like

 {"iban": "DE40100100103307118608"}

or

 {"iban": "DE40100100103307118608",

 "currency": "EUR"}

If the underlying account is a multicurrency account, then

• the first reference is referring to the collection of all sub-accounts addressable by

this IBAN, and

• the second reference is referring to the euro sub-account only.

This interface specification is acting on sub-accounts of multicurrency accounts in exactly the

same way as on regular accounts. This applies to payment initiation as well as to account

information.

3.11 Interval Borders Including Rules

Data attributes for dates, amounts or other discrete data come sometimes with the suffix "To"

or "From", e.g. "dateTo", "validTo" or "baseAmountFrom". These attributes always define

intervals. In all such cases, the "From" and "To" is including the value at the addressed border

of the addressed interval. That means, that e.g. "dateFrom": "2023-04-05" means, that the 5th

Aprill 2023 is included in the addressed interval.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 25

 (ref. License Notice for full license conditions)

4 Error Handling

This section introduces the error handling in the openFinance API Framework. API data

structures as defined here will not be repeated in service specifications. Instantiations to the

related services will only be provided via the related OpenAPI files.

4.1 Responses in Error Cases

In order to achieve a better readability, the service definitions in the openFinance API

Framework specify responses in case of a positive processing result only. The following

section gives specific rules for the case of a negative processing result applicable to all

services.

4.1.1 Header

In general, the same rules regarding the presence of header elements apply for both positive

and negative responses. An exception is made for cases, where an error occurred before

functional processing. Examples for such error cases are general server errors (typically with

50x http response code) and – depending on the implementation – the validation of the

certificate. In those error cases, the ASPSP may omit the specified headers. However, when

functional processing has already taken place, the ASPSP is still required to include the

mandated (and if applicable conditional) headers also in a negative response.

4.1.2 Body

All descriptions of body elements in the service documents only apply to cases with a positive

response. The related attributes need also be provided in the body, where possible and

applicable. In addition, the API shall offer additional error information as described in Section

4.2, when the API server is technically able to provide it.

4.2 Additional Error Information

If necessary, the ASPSP might communicate additional error information to the API Client

within a request/response dialogue which results in 4xx or 5xx HTTP response codes, in some

exemptions also for HTTP response code 2xx, see also Section 3.8 This specification offers

two possibilities for ASPSPs to communicate additional error information. The ASPSP might

choose one of the solutions. Note that the major additional error information is the detailed

error code which is of type "Message Code" as defined in [oFA DD] is used in both variants of

additional error information.

In cases, where no message code is defined for an HTTP response code, the additional error

information is not used, since the messageCode is a mandatory subfield. In this case, the

HTTP code gives sufficient information about the error situation.

4.2.1 openFinance API Framework Specific Solution

The openFinance API Framework offers a proprietary way to transport additional error

information. In this solution, the additional error information is sent to the API Client using the

data element apiClientMessages with the attribute category set to "ERROR". The attribute

"code" indicates the error, and the attribute "path" the path of the element of the request

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 26

 (ref. License Notice for full license conditions)

message which provoked this error message, if applicable. It will further offer a free text field

to describe the error context or actions to be taken to the API Client.

Usually, the usage of apiClientMessages accompanies a negative response. However, there

are cases where the ASPSP sends a positive response but still includes an apiClientMessages

attribute. This might occur, when the API Client sends a status request and the request itself

is technically accepted but the requested status indicates some kind of banking processing

issue/error or the requirement of additional action by the API Client or the PSU. In the same

way, the requirement of additional actions can be indicated when (generally) accepting a

payment initiation.

In addition, the response message might optionally contain a _links section containing a

hyperlink to tell the API Client the next step to avoid further errors, cp. Section 3.6. This applies

especially in case of PSU authentication errors where a resubmission of credentials by the

API Client might be needed after new entering of credentials by the PSU.

Response Code

The HTTP response code is 4xx or 5xx as defined in Section 3.8 for response codes in case

of errors.

Response Header

Attribute Type Condition Description

Content-Type String Mandatory The string application/json is used.

Response Body

Attribute Type Condition Description

apiClientMessages Array of

Client

Message

Information

Optional Error information

_links Links Optional Should refer to next steps if the problem can be

resolved e.g. for re-submission of credentials.

Example 1 (Access token not correct):

{ "apiClientMessages": [{

 "category": "ERROR",

 "code": "TOKEN_INVALID",

 "text": "additional text information of the ASPSP up to 500

characters"

 }]

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 27

 (ref. License Notice for full license conditions)

}

Example 2 (Password incorrect):

{ "apiClientMessages": [{

 "category": "ERROR",

 "code": "PSU_CREDENTIALS_INVALID",

 "text": "additional text information of the ASPSP up to 500

characters"

 }],

 "_links": {

 "updatePsuAuthentication": {"href": "/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100"}

 }

}

4.2.2 Standardised Additional Error Information

In [RFC7807] a standardised definition of reporting error information is described. In the

following, requirements of how to use this standardised error information reporting in the

context of openFinance API Framework are defined.

RFU: This section might be replaced in future by [RFC9457] which is the successor of

[RFC7807].

Response Code

The HTTP response code is 4xx or 5xx as defined in Section 3.8 for response codes in case

of errors. However, with the same reasoning as in Section 4.2.1, Additional Error Information

may also be included in certain responses with positive response codes.

Response Header

Attribute Type Condition Description

Content-Type String Mandatory The string application/problem+json is used.

Response Body

Attribute Type Condition Description

type Max70Text Mandatory A URI reference [RFC3986] that identifies the

problem type.

Remark for Future: These URI will be provided

by NextGenPSD2 in future.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 28

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

title Max70Text Optional Short human readable description of error type.

Could be in local language. To be provided by

ASPSPs.

status Integer Optional HTTP response code generated by the server.

If contained, this is more relevant as the actual

http response code in the actual response,

because it is introduced by the application

server.

detail Max500Text Optional Detailed human readable text specific to this

instance of the error.

instance Max256Text Optional This attribute is containing a JSON pointer (as

defined in [RFC6901]) or XPath expression to

indicate the path to an issue generating the error

in the related request.

code Message

Code

Mandatory Message code to explain the nature of the

underlying error.

additionalErrors Array of

Error

Information

Optional Might be used if more than one error is to be

communicated

_links Links Optional Should refer to next steps if the problem can be

resolved e.g. for re-submission of credentials.

Example 1

 HTTP/1.1 401 Unauthorized

 Content-Type: application/problem+json

 Content-Language: en

 {

 "type": "https://berlingroup.com/error-codes/TOKEN_INVALID",

 "title": " The OAuth2 token is associated to the TPP but is not valid

for the addressed service/resource.",

 "detail": " additional text information of the ASPSP up to 500

characters ",

 "code": "TOKEN_INVALID",

 "additionalErrors": [{

 "title": "The PSU-Corporate-ID cannot be matched by the

addressed ASPSP.",

 "detail": "additional text information of the ASPSP up to 500

characters",

 "code": "CORPORATE_ID_INVALID"

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 29

 (ref. License Notice for full license conditions)

 },…],

 "_links": { }

 }

Example 2

The following example reflects a decline to a Bulk Payment request, where the first payment

of the bulk contains an incorrect IBAN to identify the creditor account,

 HTTP/1.1 400 Bad Request

 Content-Type: application/problem+json

 Content-Language: en

 {

 "type": "https://berlingroup.com/error-codes/PAYMENT_FAILED",

 "title": "The payment initiation POST request failed during the initial

process. Additional information may be provided by the ASPSP.",

 "detail": "IBAN check failed.",

 "instance": "/creditTransfers/0/creditorAccount/iban"

 "code": " PAYMENT_FAILED",

 "_links": { }

 }

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 30

 (ref. License Notice for full license conditions)

5 Authentication of API Client and ASPSP at transport layer

The communication between an API Client and an ASPSP is always secured by using a TLS-

secured connection. Client authentication is always used, i.e. a mutual authentication between

the API Client and the ASPSP will be part of the setup of the TLS-secured connection.

TLS version 1.2 or higher has to be used. For the choice of cipher suite selections, NIST

recommendations on the cryptographical strength should be followed. For ASPSPs, further

cipher suite requirements of their national IT security agency or of a related API Access

Scheme might apply.

Two TLS-secured connections have to be distinguished:

• TLS-secured connection established by the API Client (as TLS-client) to access

the BG API provided by an ASPSP (as TLS-server) for usual API services defined

by the XS2A Framework or the openFinance API Framework. See section 5.1.

• TLS-secured connection established by an ASPSP (as TLS-client) to access an

API provided by an API Client (as TLS-server) for pushed-based services defined

by the openFinance Framework. See section 5.2.

5.1 TLS-secured connection established by API Client

Support for this security measures is mandatory for any ASPSP and any API Client.

For all services offered at an XS2A API the TLS-secured connection has to be established by

the API Client as TLS-client. The ASPSP acts as TLS-server in this case.

This is also true for most of the extended services offered at an openFinance API. Only for

push-based extended services the TLS-secured connection has to be established by the

ASPSP. See section 5.2 for this case.

For the case of an XS2A API:

The API Client has to establish the TLS-secured connection including client authentication,

i.e. authentication of the API Client as TLS-client. For this authentication the API Client has to

use a qualified certificate for website authentication (QWAC). This qualified certificate has to

be issued by a qualified trust service provider according to the eIDAS regulation [eIDAS]. The

content of the certificate has to be compliant with the requirements of [EBA-RTS] and the

technical specification of ETSI [ETSI TS 119 495]. The certificate of the API Client has to

indicate all roles the API Client is authorised to use (according to [PSD2] and [EBA-RTS].

Remark: For getting a QWAC compliant with the requirements of [EBA-RTS] and [ETSI TS

119 495] the API Client has to get the necessary licence to access a service as a PISP, AISP

or PIISP from an NCA according to the regulations of [PSD2].

For the case of an openFinance API:

The requirements for the certificate for website authentication to be used by the API Client for

the client authentication as TLS-client will be defined by the ASPSP. In any case a QWAC of

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 31

 (ref. License Notice for full license conditions)

an API Client enabling him to access the XS2A API of an ASPSP can also be used by the API

Client to access the openFinance API of the ASPSP.

In any case within the openFinance API Framework:

This specification does not define any further requirements for the certificates used by an

ASPSP as TLS-server. Of course, the certificates should be compliant with general

requirements defined by [RFC5280] and the best practise recommendations of the

CA/Browser Forum.

If an ASPSP wants to support any push-based services it is recommended that the certificate

of the ASPSP supports also the client authentication as TLS-client. See section 5.2 for further

details.

5.2 TLS-secured connection established by ASPSP

Support for this security measures is conditional for an ASPSP and for an API Client. It shall

be supported by an ASPSP if the ASPSP wants to offer pushed-based services. It shall be

supported by an API Client if the API Client wants to use pushed-based services offered by

an ASPSP.

For push-based extended services it is necessary that the TLS-secured connection is

established by the ASPSP. In this case the ASPSP acts as TLS-client and the API Client as

TLS-server.

The ASPSP shall use the same certificate for his authentication as TLS-client as he will use

for his authentication as TLS-server as described in section 5.1. For this it this necessary that

the certificate of the ASPSP supports also the client authentication, i.e. the certificate shall

contain the field extendedKeyUsage with both attributes clientAuth and serverAuth.

The API Client should use the same QWAC for his authentication as TLS-server as he will

use for his authentication as TLS-client as described in section 5.1.

The URIs which are provided by an API Client to an ASPSP for push-based services shall

comply with the domain secured by the certificate of the API Client (used for his authentication

as TLS-server), i.e. as contained in one of the fields CN or SubjectAltName of the certificate

of the API Client. Please note that in case of example-TPP.com, a certificate entry Client-

Notification-URI like

• https://example-TPP.com/xs2a-client/v2/ASPSPidentifcation/mytransaction-

id/notifications or

• https://push-server.example-TPP.com/xs2a-

client/v2/ASPSPidentifcation/mytransaction-id/notifications

would be compliant.

Wildcard definitions shall be taken into account for compliance checks by the ASPSP.

https://example-tpp.com/xs2a-client/v1/ASPSPidentifcation/mytransaction-id/notifications
https://example-tpp.com/xs2a-client/v1/ASPSPidentifcation/mytransaction-id/notifications
https://push-server.example-tpp.com/xs2a-client/v1/ASPSPidentifcation/mytransaction-id/notifications
https://push-server.example-tpp.com/xs2a-client/v1/ASPSPidentifcation/mytransaction-id/notifications

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 32

 (ref. License Notice for full license conditions)

NOTE: The URI should be addressable by the ASPSP just by presenting his certificate for his

authentication as TLS-client as part of the establishment of the TLS-secured connection. No

further pre-steps of any kind should be mandated by the API Client.

5.3 Certificate Requirements on Redirect URIs

The TPP can provide several URIs to the ASPSP as parameters for succeeding protocol

steps. For security reasons, it should be ensured that these URIs are secured by the TPP

eIDAS QWAC used for identification of the TPP. The following applies:

URIs which are provided by TPPs in Client-Redirect-URI or Client-Nok-Redirect-URI should

comply with the domain secured by the eIDAS QWAC certificate of the TPP in the field CN or

SubjectAltName of the certificate. Please note that in case of example-TPP.com as certificate

entry Client-Redirect-URI like

• www.example-TPP.com/xs2a-client/v2/ASPSPidentifcation/mytransaction-id or

• redirections.example-TPP.com/xs2a-client/v2/ASPSPidentifcation/mytransaction-

id

would be compliant.

Wildcard definitions shall be taken into account for compliance checks by the ASPSP.

NOTE: In premium services, ASPSPs may reject requests, if the provided URIs do not comply.

http://www.example-tpp.com/xs2a-client/v1/ASPSPidentifcation/mytransaction-id

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 33

 (ref. License Notice for full license conditions)

6 Signing HTTP request messages at the application level

Support for this security measure is optional for an ASPSP.

Support for the security measure is mandatory for an API Client. If an ASPSP requests signing

a HTTP request message at the application level the API Client shall sign the HTTP request

message at application level.

If requested by an ASPSP only the HTTP request message has to be signed at application

level by the API Client. HTTP response messages are not signed by the ASPSP, if not stated

otherwise explicitly in the ASPSP documentation.

Remark for Future: Future versions might also support explicit specification of signing HTTP

response messages at application level.

Signing of HTTP request messages at application level used for push-based services is also

possible. The ASPSP (or related API access scheme) decides if he signs an HTTP request

message used for a pushed-based service at the application level.

Signing of an HTTP request message at application level is always done using the signature

profile based on JSON Web signature [RFC7515] adapted for signing HTTP request

messages (taking [OBEsign] as best practise approach into account). See section 6.2 for the

description of this signature profile.

6.1 Certificates to be used

For the case of an XS2A API:

For signing an HTTP request message at application level, the API Client has to use a qualified

certificate for electronic seals (QSealC). This qualified certificate has to be issued by a

qualified trust service provider according to the eIDAS regulation [eIDAS]. The content of the

certificate has to be compliant with the requirements of [EBA-RTS] and the technical

specification of ETSI [ETSI TS 119 495] . The certificate of the API Client has to indicate all

roles the API Client is authorised to use (according to [PSD2] and [EBA-RTS].

Remark: For getting a QSealC compliant with the requirements of [EBA-RTS] and [ETSI TS

119 495] the API Client has to get the necessary licence to access a service as a PISP, AISP

or PIISP from an NCA according to the regulations of [PSD2].

For the case of an openFinance API:

The requirements for the certificate for signing HTTP request messages to be used by the API

Client will be defined by the ASPSP. In any case a QSealC of an API Client enabling him to

sign HTTP request messages at the XS2A API of an ASPSP can also be used by the API

Client to sign HTTP request messages at the openFinance API of the ASPSP.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 34

 (ref. License Notice for full license conditions)

In any case of a BG API:

This specification does not define any further requirements for the certificates used by an

ASPSP to sign HTTP request messages as part of a push-based service. Of course, the

certificates should be compliant with general requirements defined by [RFC5280].

6.2 Signing HTTP messages based on [RFC7515]

The following signature profile is compliant with the requirements of [RFC7515] (JSON Web

Signature) and [ETSI TS 119 182-1] (JAdES profile of ETSI). It is based on the best practise

approach defined by [OBEsign].

6.2.1 Extensions to the HTTP message

6.2.1.1 Path

None.

6.2.1.2 Header parameter

The following parameters have to be added to the header of the HTTP request message:

Attribute Type Condition Description

Digest String Conditional Contains the hash value calculated over the content

of the body of the HTTP request message. See

section 6.2.2.1.

x-jws-signature String Conditional JSON Web Signature containing the base64url

encoded JWS Protected Header and the base64url

encoded JWS Signature Value (separated by "..").

See section 6.2.2.2.

Table 1: Header parameters for HTTP message signature according to [OBEsign].

Remark on the row "condition":

If the HTTP request message has to be signed using this signature profile both

attributes are mandatory.

Remark on the transport of the certificate:

The attribute TPP-Signature-Certificate used in former versions of the specifications

for the transport of the certificate is not available for version 2 of the specification.

Instead the recommendations of [OBEsign] are used for the transport of the certificate.

These are summarized as follows:

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 35

 (ref. License Notice for full license conditions)

• If the certificate used by the API Client to sign the HTTP request message is not

already known by the ASPSP the API Client shall include his certificate into the

JWS Protected Header using the element x5c. See requirement 9 of [OBEsign].

• If the certificate used by the API Client to sign the HTTP request message is

already known by the ASPSP (by some prior arrangements out of scope of this

specification) one of the elements x5c (containing the certificate) or x5t#S256

(containing a digest of the certificate using SHA 256) shall be part of the JWS

Protected Header. Not both elements shall be part of the JWS Protected Header

at the same time. See requirement 7 of [OBEsign].

• The ASPSP may require in any case that the certificate is included into the JWS

Protected Header using the element x5c.

• If the JWS Protected Header contains the element x5t#S256 (containing a digest

of the certificate using SHA 256), the JWS Protected Header may also contain the

element x5u with further information to identify the certificate. See option 14 of

[OBEsign].

6.2.1.3 Message body

None.

6.2.2 How to build the extensions?

6.2.2.1 Attribute Digest

When an API Client includes a signature according to this signature profile, he also must

include a "Digest" header as defined in [RFC3230]. The "Digest" Header contains a Hash of

the message body. If the message does not contain a body, the "Digest" header must contain

the hash of an empty byte list. The only hash algorithms that may be used to calculate the

Digest within the context of this specification are SHA-256 and SHA-512 as defined in

[RFC5843].

Remark: In case of a multipart message the same method is used to calculate the digest. I.e.

a hash of the (whole) message body is calculated including all parts of the multipart message

as well as the separators.

6.2.2.2 Attribute x-jws-signature

The attribute x-jws-signature contains the JSON Web Signature. This consists of the following

three elements:

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 36

 (ref. License Notice for full license conditions)

Element Type Condition Description

JWS Protected

Header

String Mandatory Contains the JWS Protected Header base64url

encoded.

Delimiter String Mandatory Constant string "..".

JWS Signature

Value

String Mandatory Contains the JWS Signature Value base64url

encoded.

Table 2: Elements of the JSON Web Signature according to [OBEsign].

JWS Protected Header

The JWS Protected Header is a JSON structure which defines how the signature is created.

It contains the following elements:

Element Type Condition Description

typ String Mandatory Fixed string "JOSE".

b64 Boolean Mandatory Parameter according to [RFC 7797] indicating that

the payload does not need to be base64url re-

encoded

According to [OBEsign] this element has to be

included and has to be set to "false".

x5c String Conditional Certificate used by the API Client to sign the HTTP

request message.

The certificate has to be included base64url

encoded.

This element may include the full certificate chain up

to a trust anchor. See option 10 in [OBEsign].

This element shall be part of the JWS Protected

Header if the certificate is not already known by the

ASPSP (by some prior arrangements out of scope of

this specification). The ASPSP may require that this

element is included. The ASPSP informs about this

as part of the discovery API.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 37

 (ref. License Notice for full license conditions)

Element Type Condition Description

x5t#S256 String Conditional Hash value over the certificate of the API Client used

for signing the request message.

SHA 256 has to be used for calculating this hash

value. The hash value has to be included base64url

encoded.

This element shall be part of the JWS Protected

Header if and only if the element x5c is not part of

this JWS protected header.

x5u String Optional An URI pointing to the resource where the X.509

signing certificate (with or without the certification

path) may be retrieved from.

This element may be part of the JWS Protected

Header only if also the element x5t#S256 is also part

of the JWS Protected Header

crit List Mandatory List of names of elements of the JWS Protected

Header which are marked critical.

According to [OBEsign] this element has to be

included and has to contain the following list:

["b64", "sigT", "sigD"]

Other elements shall not be marked critical for BG

API.

sigT DateTime Mandatory Claimed signing time. The time shall be UTC (ending

in "Z") and shall indicate date and time to the

second.

sigD JSON Mandatory This element shall contain the two sub-elements

pars and mid.

The sub-element pars contains the list of HTTP

header parameters which are used to create the

data to be signed. The names of the HTTP header

parameters shall be given lowercase in this list.

The sub-element mid identifies the mechanism used

to identify the data to be signed. This sub-element

shall contain the fixed value

http://uri.etsi.org/19182/HttpHeaders

http://uri.etsi.org/19182/HttpHeaders

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 38

 (ref. License Notice for full license conditions)

Element Type Condition Description

For using this signature profile with BG API, the

following restrictions concerning the sub-element

pars shall be considered:

The list shall contain at least "digest" and "x-request-

id".

Conditionally the list shall include:

• "api-contract-id", If and only if "API-Contract-

ID" is included as a header of the HTTP-

Request.

• "psu-id", if and only if "PSU-ID" is included

as a header of the HTTP-Request.

• "psu-corporate-id", if and only if "PSU-

Corporate-ID" is included as a header of the

HTTP-Request.

• "Client-Redirect-uri", if and only if "Client-

Redirect-URI" is included as a header of the

HTTP-Request.

The list may include further HTTP header

parameters.

alg String Mandatory This element identifies the cryptographic algorithm

used to create the JWS Signature Value.

According to [OBEsign] this element has to be

included and shall not have the value "none".

Identifiers should be used (if possible) according to

[RFC7518].

For using this signature profile with BG API, the

following restrictions concerning the algorithm to be

used shall be considered:

The algorithm shall identify the same algorithm for

the signature as described for the public key

(Subject Public Key Info) in the certificate (already

known by the ASPSP or contained in the element

"x5c") of this Request. Otherwise the request

message shall be rejected.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 39

 (ref. License Notice for full license conditions)

Element Type Condition Description

aud String Mandatory Parameter according to [RFC7519] containing the

method and the target of the HTTP-Request as a

string. The target is identified by the relative URI

starting with /v2/. If the HTTP-Request contains

query parameters, these are also included in this

element.

Examples for the content of the aud element:

"POST /v2/deferred-payments/sepa-

credit-transfers"

"GET /v2/deferred-payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-

a9c0ff861100/initiations?dateFrom=2024-

04-15"

Table 3: Elements of the JWS Protected Header according to [OBEsign].

Remarks:

• The element aud according to [RFC7519] is an extension to [OBEsign]. It is used

to protect the method and the relative path of the HTTP-request by the signature.

• If the element x5t#S256 is used: For the current version the algorithm SHA 256

shall be used to calculate the hash value over the certificate. This might be

enhanced to further hash algorithms in future versions of this specification.

• If the element x5t#S256 is used: It is recommended that the relying party checks

the hash value contained in X5t#S256 against the certificate of the API Client

(already known to the ASPSP by some prior arrangements out of scope of this

specification).

• Remark: If the element x5t#S256 is used, the hash value can be used as key id to

identify a certificate/public key exchanged between API Client and ASPSP before.

• For the element sigD the RECOMMENDATION-23 of [OBEsign] is not followed,

i.e. (request-target), Content-Type, Content-Encoding and Host may not be part of

the sub-element pars.

• For the element sigD the ASPSP may not require more HTTP header parameters

to be included. The API Client may decide which HTTP header parameters are

included into the generation of the signature as long as the restrictions mentioned

above are met.

• For the element alg the ASPSP may introduce further restrictions about the

algorithms to be used. Information will be given by the discovery API of the ASPSP.

https://api.testbank.com/psd2/v1/payments/1234-wertiq-983/status
https://api.testbank.com/psd2/v1/payments/1234-wertiq-983/status

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 40

 (ref. License Notice for full license conditions)

JWS Signature Value

The signature shall be calculated using the algorithm indicated by the element alg of the JWS

Protected Header. The key to be used shall be the private key corresponding to the certificate

(e.g. QSealC) of the API Client.

To calculate the signature, proceed as follows:

1. Encode the JSON structure JWS Protected Header into base64url.

2. Collect the HTTP header parameters as indicated by the sub-element pars of the

element sigD of the JWS Protected Header (using the sequence defined by the content

of pars) to form a string as follows:

a) For an HTTP header name contained in the element pars create the header

field string by concatenating the lowercased header field name followed with a

colon ':', a space character, and the header field value. Any leading and trailing

white spaces are removed. If there are multiple instances of the same header

field, all header field values associated with the header field shall be

concatenated, separated by an ASCII comma and an ASCII space ', ', and used

in the order in which they will appear in the transmitted HTTP message.

b) Insert newline character after all but the last HTTP header value.

c) Concatenate the header field strings.

See 5.2.8.2 of [ETSI TS 119 182-1] [for this procedure.

3. Prepare the signature input by combining the JWS Protected Header base64url coded

(see step 1.) with the result string of step 2 separated by ".".

4. Compute the JWS Signature value using the signature input from step 3 using the

signature algorithm determined by the element alg of the JWS Protected Header.

6.2.3 Example

Disclaimer:

The following example is only an informative part of this specification. Its objective is

just to give an example for the different steps to build the signed HTTP message

starting from a given HTTP message. It should not be taken as a reference point for

implementations for signing Http messages. The key pair used has been generated

without any connection to a CA. No certificate exists for the public key. The hash value

of the certificate used in the example is only a dummy value. In addition, the sequence

of steps shown in the example could be changed by a real implementation if the same

result is produced.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 41

 (ref. License Notice for full license conditions)

For the purposes of this example, it is assumed that an RSA key and corresponding X.509

certificate with the following Properties are used:

RSA public

Modulus (hex)

97 55 5b cf bb 51 d5 a0 01 db cb 34 3a 56 b6 1d 18 ff 5a

e0 c6 43 79 cd b1 48 83 8d 02 80 b5 df c7 85 eb 4c 0b cb

97 07 e3 0b bb e6 83 ec a3 09 73 d2 9a fe 7a f4 69 f6 e1

a6 0a f9 fc 9e 35 06 37 d9 08 4b 42 cb 11 69 4d 8f f1 5d

ee ef 18 10 a4 73 d4 1e cb a5 d2 ca d9 da 91 b7 06 9d 54

03

RSA public

Exponent (hex)

03

RSA private Key

(hex)

19 38 e4 a2 9f 38 4e 45 55 a4 a1 de 09 b9 1e 5a 2e d5 39

d0 21 0b 3e f7 9d 8c 15 ec d5 c0 1e 4f f6 96 51 e2 01 f7

43 d6 a5 d7 49 fb c0 a7 70 81 51 b1 90 73 6e 31 90 4a 2e

0c f8 85 72 90 34 9d 66 7e f6 74 66 4c 69 9c 46 01 41 0c

3a a5 0d c8 9b 05 d2 68 c0 7c 44 a6 64 da 69 19 28 b6 05

af

Certificate SHA-256

hash (hex)

77 2b 4f a5 29 09 63 38 53 74 f5 d2 58 fe e3 85 78 06 e2

40 8e 58 85 86 89 eb 1d ce 4b cd 2f 36

Certificate SHA-256

hash (base64)

dytPpSkJYzhTdPXSWP7jhXgG4kCOWIWGiesdzkvNLzY

Step 0: Take the HTTP message (HTTP Headers + HTTP Body)

Description: Prepare unsigned HTTP message input to JWS function.

Note: Each line is terminated with a pair of carriage return and line feed character (0x0D0A),

including the last line.

POST /v2/payments/sepa-credit-transfers HTTP/1.1

Host: api.testbank.com

Content-Type: application/json

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

PSU-IP-Address: 192.168.8.78

PSU-GEO-Location: GEO:52.506931,13.144558

PSU-User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:54.0) Gecko/20100101

Firefox/54.0

Date: Mon, 26 Oct 2020 11:24:37 GMT

{

"instructedAmount": {"currency": "EUR", "amount": "123.50"},

"debtorAccount": {"iban": "DE40100100103307118608"},

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 42

 (ref. License Notice for full license conditions)

"creditor": {"name": "Merchant123"},

"creditorAccount": {"iban": "DE02100100109307118603"},

"remittanceInformationUnstructured": ["Ref Number Merchant"]

}

Step 1: Create JWS Protected Header

Description: Produce JWS header parameters which define how the signature is created:

"b64": false means don't base64url encode header data to be signed

"x5t#S256": "…." Hash of signing certificate (base64url encoded)

"crit": ["sigT","sigD","b64"]

"sigT": "…." Claimed signing time

"sigD": {….} Lower case HTTP Header fields to be signed

"alg": "RS256" Signature algorithm

Note: This is shown below in a pretty print layout. It will be sent as a single string without line

brakes or extra spaces. Escape characters are not used.

{

"b64": false,

"x5t#S256": "dytPpSkJYzhTdPXSWP7jhXgG4kCOWIWGiesdzkvNLzY",

"crit": ["sigT", "sigD", "b64"],

"sigT":"2020-10-26T11:26:57Z",

"sigD":{

 "pars":["x-request-id", "digest"],

 "mId":"http://uri.etsi.org/19182/HttpHeaders"

 },

"alg":"RS256"

}

Step 2: Encode JWS Protected Header into Base64url

Description: Convert JWS Protected Header (without line breaks or extra spaces) into a

Base64url encoded string.

eyJiNjQiOmZhbHNlLCJ4NXQjUzI1NiI6ImR5dFBwU2tKWXpoVGRQWFNXUDdqaFhnRzRr

Q09XSVdHaWVzZHprdk5MelkiLCJjcml0IjpbInNpZ1QiLCJzaWdEIiwiYjY0Il0sInNp

Z1QiOiIyMDIwLTEwLTI2VDExOjI2OjU3WiIsInNpZ0QiOnsicGFycyI6WyJ4LXJlcXVl

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 43

 (ref. License Notice for full license conditions)

c3QtaWQiLCJkaWdlc3QiXSwibUlkIjoiaHR0cDovL3VyaS5ldHNpLm9yZy8xOTE4Mi9I

dHRwSGVhZGVycyJ9LCJhbGciOiJSUzI1NiJ9

Step 3a: Compute Digest of HTTP Body

Description: Calculate hash of the HTTP Body (payload without HTTP header and following

empty line).

With the example body above, SHA-256 would be

0x98420e321d1e9514e464261450dce761f57d546d4c4efef1c1313d4bcc8da632

(hexadecimal) or in base64 : mEIOMh0elRTkZCYUUNznYfV9VG1MTv7xwTE9S8yNpjI=.

Step 3b: Collect HTTP Headers to be signed

Description: Create HTTP header string, as selected using the JWS header parameter sigD,

including Digest (base64 encoded).

x-request-id: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

digest: SHA-256=mEIOMh0elRTkZCYUUNznYfV9VG1MTv7xwTE9S8yNpjI=

Step 4: Prepare input for Signature Value Computation

Description: Combine Base64url encoded JWS Protected Header with HTTP Header to be

signed, separated by ".", ready for computation of signature value.

eyJiNjQiOmZhbHNlLCJ4NXQjUzI1NiI6ImR5dFBwU2tKWXpoVGRQWFNXUDdqaFhnRzRr

Q09XSVdHaWVzZHprdk5MelkiLCJjcml0IjpbInNpZ1QiLCJzaWdEIiwiYjY0Il0sInNp

Z1QiOiIyMDIwLTEwLTI2VDExOjI2OjU3WiIsInNpZ0QiOnsicGFycyI6WyJ4LXJlcXVl

c3QtaWQiLCJkaWdlc3QiXSwibUlkIjoiaHR0cDovL3VyaS5ldHNpLm9yZy8xOTE4Mi9I

dHRwSGVhZGVycyJ9LCJhbGciOiJSUzI1NiJ9.x-request-id: 99391c7e-ad88-

49ec-a2ad-99ddcb1f7721

digest: SHA-256=mEIOMh0elRTkZCYUUNznYfV9VG1MTv7xwTE9S8yNpjI=

Step 5: Compute JWS Signature Value

Description: Compute the digital signature cryptographic value calculated over a sequence of

octets derived from the JWS Protected Header and HTTP Header Data to be Signed. This is

created using the signing key associated with the certificate identified in the JWS Protected

Header "x5t#S256" and using the signature algorithm identified by "alg".

The RSA Signature of the example is

Hex 36 e1 a0 95 60 6d 1d c5 da be 86 f6 66 65 be 3e 84 a9 32 68 49 4b

d5 3a cf cc cf a8 71 68 13 de ef 1c 8d f3 f3 0b 5a 55 d6 f0 b2 3e

56 ce 03 e3 b5 55 94 52 79 3c 73 13 f8 26 32 d7 77 0c f0 86 11 c1

da e2 79 14 8e 19 64 67 52 41 0c 3e f6 95 cf 53 1d dc 08 94 b3 1e

6a e0 90 9f 9d 8b e0 38

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 44

 (ref. License Notice for full license conditions)

base64U

RL

NuGglWBtHcXavob2ZmW-

PoSpMmhJS9U6z8zPqHFoE97vHI3z8wtaVdbwsj5WzgPjtVWUUnk8cxP4JjLXdwzw

hhHB2uJ5FI4ZZGdSQQw-9pXPUx3cCJSzHmrgkJ-di-A4

Step 6: Build JSON Web Signature

Description: Create JSON Web Signature containing the Base64url encoded JWS Protected

header and ".." and the JWS Signature Value. This is encoded using JWS compact

serialisation with the HTTP Header Data to be Signed detached from the signature.

eyJiNjQiOmZhbHNlLCJ4NXQjUzI1NiI6ImR5dFBwU2tKWXpoVGRQWFNXUDdqaFhnRzRr

Q09XSVdHaWVzZHprdk5MelkiLCJjcml0IjpbInNpZ1QiLCJzaWdEIiwiYjY0Il0sInNp

Z1QiOiIyMDIwLTEwLTI2VDExOjI2OjU3WiIsInNpZ0QiOnsicGFycyI6WyJ4LXJlcXVl

c3QtaWQiLCJkaWdlc3QiXSwibUlkIjoiaHR0cDovL3VyaS5ldHNpLm9yZy8xOTE4Mi9I

dHRwSGVhZGVycyJ9LCJhbGciOiJSUzI1NiJ9..NuGglWBtHcXavob2ZmW-

PoSpMmhJS9U6z8zPqHFoE97vHI3z8wtaVdbwsj5WzgPjtVWUUnk8cxP4JjLXdwzwhhHB

2uJ5FI4ZZGdSQQw-9pXPUx3cCJSzHmrgkJ-di-A4

Step 7: Insert JSON Web Signature into HTTP Message to form HTTP Signed Message

Description: The HTTP message as sent over the network with the JSON Web Signature

inserted.

POST /v2/payments/sepa-credit-transfers HTTP/1.1

Host: api.testbank.com

Content-Type: application/json

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

PSU-IP-Address: 192.168.8.78

PSU-GEO-Location: GEO:52.506931,13.144558

PSU-User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:54.0) Gecko/20100101

Firefox/54.0

Date: Mon, 26 Oct 2020 11:24:37 GMT

Digest: SHA-256=mEIOMh0elRTkZCYUUNznYfV9VG1MTv7xwTE9S8yNpjI=

x-jws-signature:

eyJiNjQiOmZhbHNlLCJ4NXQjUzI1NiI6ImR5dFBwU2tKWXpoVGRQWFNXUDdqaFhnRzRr

Q09XSVdHaWVzZHprdk5MelkiLCJjcml0IjpbInNpZ1QiLCJzaWdEIiwiYjY0Il0sInNp

Z1QiOiIyMDIwLTEwLTI2VDExOjI2OjU3WiIsInNpZ0QiOnsicGFycyI6WyJ4LXJlcXVl

c3QtaWQiLCJkaWdlc3QiXSwibUlkIjoiaHR0cDovL3VyaS5ldHNpLm9yZy8xOTE4Mi9I

dHRwSGVhZGVycyJ9LCJhbGciOiJSUzI1NiJ9..NuGglWBtHcXavob2ZmW-

PoSpMmhJS9U6z8zPqHFoE97vHI3z8wtaVdbwsj5WzgPjtVWUUnk8cxP4JjLXdwzwhhHB

2uJ5FI4ZZGdSQQw-9pXPUx3cCJSzHmrgkJ-di-A4{

"instructedAmount": {"currency": "EUR", "amount": "123.50"},

"debtorAccount": {"iban": "DE40100100103307118608"},

"creditor": {"name": "Merchant123"},

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 45

 (ref. License Notice for full license conditions)

"creditorAccount": {"iban": "DE02100100109307118603"},

"remittanceInformationUnstructured": "Ref Number Merchant"

}

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 46

 (ref. License Notice for full license conditions)

7 Security measures for securing (parts of) the message body

7.1 Signing the body

The body of a request or response message may be signed by one or more responsible

entities. Who is responsible for signing the body depends on the single use case. The following

are possible examples:

• For a request message sent by an API Client to the openFinance API of an ASPSP

the body may be signed by one or more PSU.

• For a response message to a request of an API Client the body may be signed by

a responsible department or one or more responsible employees of the ASPSP.

• For a request message as part of a pushed-based service the body may be signed

by a responsible department or one or more responsible employees of the ASPSP.

If the body of a request message sent by an API Client to the openFinance API of an ASPSP

is signed by one or more PSU this will be called a signed payment request, if the request

message is part of a payment service and contains payment data. For a signed payment

request further SCA procedures of the PSU involved will not be necessary if the creation of

the corresponding signatures is compliant with the requirements of [EBA-RTS].

Remark:

Signing the body of a request message for a signed payment request should not be

confused with the signing of an HTTP request message according to section 6..

Signing the HTTP message according to section 6 will authenticate the API Client

sending the request message to openFinance API of the ASPSP. It will not

authenticate the PSU and for this reason cannot substitute an SCA of the PSU.

It is up to the ASPSP to decide if it supports signed bodies for messages. For some use cases

an ASPSP might mandate that the body of a request message sent by an API Client has to

be signed by one or more PSUs.

This specification does not define any requirements about the quality of the process to

generate the signature over the body of the http message. It is possible that the ASPSP will

define further requirements for this as for example

• special algorithms to be used,

• key length to be used,

• quality of certificates to be used.

Different signature procedures and profiles based on asymmetric and symmetric cryptography

will be supported in future by this specification. The phrase "signing a body" will be used

regardless if the body will be secured by an electronic signature or an electronic seal based

on asymmetric cryptography or by some kind of cryptogram based on symmetric cryptography.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 47

 (ref. License Notice for full license conditions)

7.1.1 Extension to the http message

7.1.1.1 Path

None.

7.1.1.2 Query parameters

None.

7.1.1.3 Header parameters

If the body is signed the following header parameters may be added to the header of the HTTP

request or response message:

Attribute Type Condition Description

Body-Sig-

Profile

String Conditional Indicates the signature profile used for signing

(parts of) the body. Shall be used if the body is

signed.

Table 4: Header parameters to indicate that (parts of) the body have been signed.

Body-Sig-Profile

This parameter indicates the profile used for signing (parts of) the message body.

If this parameter is missing the information has to be known by some other means.

Currently the following values are supported by this specification:

JAdES_JS The body is signed based on [RFC7515] using JWS JSON Serialization

taking the requirements of [ETSI TS 119 182-1] for JAdES into account.

XAdES The body is signed based on [W3C XMLSig] taking the requirements of

[ETSI EN 319 132-1] for XAdES into account.

EMV_AC The body is signed using an EMV AC cryptogram.

Table 5: Supported signature profiles.

Future versions of the specification may support further values for the signature profile.

7.1.1.4 Body

The content of the unsigned body has to be replaced by a signed data structure.

The procedure for building the signed data structure depends on the signature profile used for

signing the body of the message. See the following subsections.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 48

 (ref. License Notice for full license conditions)

NOTE: The signing body solution for JSON encoded bodies is not yet part of market

consultation. This introductory text is only provided to inform the market about next steps in

enhancing the openFinance API Framework by e.g. SCA mechanisms by signing JSON

transaction content in the message body. The XML version is more mature and already

contained

7.1.2 Signing the body using JAdES_JS

NOTE: This signing function is still under internal review and will not be published yet. A new

version of this document expected for Q4 2023 will add this section.

7.1.3 Signing the body using XAdES

The profile XAdES can be used to sign the body of a message regardless of the coding of the

content. Nevertheless, in the following only the case of an XML coded body is considered.

ETSI European Norm [ETSI EN 319 132-1] and [W3C XMLSig] will be used for the XAdES

profile. Note that for the XML Signature Syntax and Processing also a newer version exists

[W3C XMLSig V2], but for compliance reasons with the European Norm version 1.1 as defined

by [W3C XMLSig] is used.

The body of the message will be replaced by an XML document representing the signed body

as follows:

Unsigned body:

<any_tag> body data to be signed </any_tag>

Signed body:

<SignedBody>

 <Object Id="ID_bodyToBeSigned">

 <any_tag> body data to be signed </any_tag>

 </Object>

 <Object>

 <Manifest Id="ID_manifest"> … </Manifest>

 </Object>

 </Signature Id="ID_signature_1"> … </Signature>

 …

 </Signature Id="ID_signature_n"> … </Signature>

</SignedBody>

Table 6: Elements of a signed XML message body.

Namespaces have to be included as described by [ETSI EN 319 132-1] and [W3C XMLSig].

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 49

 (ref. License Notice for full license conditions)

Only detached signatures signing local data are used, i.e. the data to be signed is contained

in a sibling element. The data to be signed can be protected by n signatures (with n >= 1).

Note that these are independent signatures and not counter signatures. If one signature has

to be protected by another signatures, counter signatures as described in section 5.2.7 of

[ETSI EN 319 132-1] shall be used.

The manifest is introduced to increase efficiency for the generation and verification of the

signatures. The hash value over the body data to be signed has to be calculated only once

and not separately for each signature.

The IDs shown above are only place holders. During creation of the XML document it has to

be taken care that the concrete values used for these IDs do not produce any collisions that

violate the ID uniqueness.

Algorithms

For transformation, canonicalization, hash value calculation and signature creation the

algorithms have to be supported as defined by [ETSI EN 319 132-1]. Out of this set of

algorithms the ASPSP can mandate algorithm to be used.

Element Manifest

The element Manifest has got the following content:

<Manifest Id="ID_manifest>

 <Reference URI="#ID_bodyToBeSigned">

 <Transforms>

 <Transform Algorithm="URI_TransformAlgorithm"/>

 </Transforms>

 <DigestMethod Algorithm="URI_HashAlgorithm"/>

 <DigestValue> base64 coded hash value </DigestValue>

 </Reference

</Manifest>

Table 7: Content of the element Manifest.

This manifest contains only the digest value for the body to be signed. It will be referenced in

each element containing a signature. This manifest is only created once regardless how many

signatures will be generated to protect the body. Also, during verification of the signatures, the

content of this manifest is only created once.

Element Signature

An element Signature containing a single signature protecting the body has got the following

content:

<Signature Id="ID_signature_k">

 <SignedInfo> … </SignedInfo>

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 50

 (ref. License Notice for full license conditions)

 <SignatureValue>

 base64 coded signature value

 </SignatureValue>

 <KeyInfo> … </KeyInfo>

 <Object>

 <QualifyingProperties>

 <SignedProperties Id="ID_signedProp_k"> …

 </SignedProperties>

 <UnsignedProperties> … </UnsignedProperties>

 </QualifiedProperties>

 </Object>

</Signature>

Table 8: Content of a single signature element

Element QualifyingProperties

The Element QualifyingProperties contains the signed and not signed properties of the data

to be signed and of the signature according to [ETSI EN 319 132-1]. The element

SignedProperties will be referenced in the element SignedInfo and by this protected by the

signature contained in the element SignatureValue.

The signature has to be compliant at least with XAdES baseline signatures of level B-B defined

in section 6 of [ETSI EN 319 132-1]. For this reason, the element SignedProperties may not

be empty (see section 6.3 of [ETSI EN 319 132-1]). It has got the following sub elements:

<SignedProperties Id="ID_signedProp_k">

 <SignedSignatureProperties> …

 </SignedSignatureProperties>

 <SignedDataObjectProperties> …

 </SignedDataObjectProperties>

</SignedProperties>

Table 9: Content of the element SignedProperties

The element SignedSignatureProperties has to contain at least the following sub elements:

• SigningTime (see section 5.2.1 of [ETSI EN 319 132-1]).

• SigningCertificateV2 (see section 5.2.2 of [ETSI EN 319 132-1]).

The element SignedDataObjectProperties hat to contain at least the following sub elements:

• DataObjectFormat (see section 5.2.4 of [ETSI EN 319 132-1]) containing at least

the MIME type indicating the format of the body data to be signed.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 51

 (ref. License Notice for full license conditions)

The element UnsignedProperties may be empty. If it is empty it is missing. Empty elements

are not allowed according to [ETSI EN 319 132-1].

An ASPSP can mandate higher levels defined by section 6 of [ETSI EN 319 132-1] depending

on the nature of the service.

Element SignedInfo

The element SignedInfo contains the information which data is signed (data of the unsigned

body and the signed properties) and how the signature has to be created. It has got the

following content:

<SignedInfo>

 <CanonicalizationMethod Algorithm= URI_CanoniAlgorithm/>

 <SignatureMethod Algorithm="URI_SignatureAlgorithm"/>

 <Reference URI="#ID_bodyToBeSigned">

 Type="http://www.w3.org/2000/09/xmldsig#Manifest">

 <Transforms>

 <Transform Algorithm="URI_TransformAlgorithm"/>

 </Transforms>

 <DigestMethod Algorithm="URI_HashAlgorithm"/>

 <DigestValue> base64 coded hash value </DigestValue>

 </Reference>

 <Reference URI="#ID_signedProp_k"

 <Transforms>

 <Transform Algorithm="URI_TransformAlgorithm"/>

 </Transforms>

 <DigestMethod Algorithm="URI_HashAlgorithm"/>

 <DigestValue> base64 coded hash value </DigestValue>

 </Reference>

</SignedInfo>

Table 10: Content of the element SignedInfo

Element KeyInfo

The element KeyInfo contains information about the key needed for the verification of the

signature. According to section 6.3 of [ETSI EN 319 132-1]

• it shall contain at least the signing certificate, i.e. the X.509 certificate belonging to

the public key needed for the verification of the signature, and

• it should contain all certificates not already available to the relying party needed

to verify the signing certificate.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 52

 (ref. License Notice for full license conditions)

The element has got at least the following content:

<KeyInfo>

 <X509Data>

 <X509Certificate>

 base64 coded X.509 signer certificate

 </X509Certificate>

 </X509Data>

</KeyInfo>

Table 11: Content of the element KeyInfo

The sub element X509Data may contain more than one certificate building a path from the

signer certificate to a root certificate or to a CA contained in a trusted list.

7.1.4 Signing the body using EMV_AC

Not supported for the current version of the openFinance Framework. Support will be added

as part of future versions.

7.2 Encryption of (parts of) the body

Parts of a body or the complete body of a request or response message can be encrypted, if

the body is JSON or XML encoded.

For the support of the encryption of (parts of) the body of a message the following holds.

• An ASPSP may support the encryption or decryption of (parts of) the body of a

request or response message optionally.

• An ASPSP shall encrypt (parts of) a response message to be sent to an API Client

only if the API Client accepts encrypted (parts of the) message bodies.

• An ASPSP shall encrypt (parts of) a request message to be sent to an API Client

as part of a pushed-based service only if the API Client accepts encrypted (parts

of the) message bodies.

• An API Client shall support the encryption of (parts of) a body of a request message

to be sent to an ASPSP.

• An API Client shall encrypt (parts of) the body of a request message to be sent to

an ASPSP if this is requested by an ASPSP.

• An API Client may support the decryption of (parts of) a body of a response

message receive from an ASPSP optionally.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 53

 (ref. License Notice for full license conditions)

• For pushed-based services: An API Client may support the decryption of (parts of)

a body of a request message receive from an ASPSP or the encryption of (parts

of) a body of a response message to be sent to an ASPSP optionally.

Remark:

API access schemes may define further requirements.

7.2.1 Overview

Encryption of (part of) the body of an http (request or response) message will be based on the

specification of

• JSON Web Encryption ([RFC7516]) for the case of JSON encoded bodies,

• XML Encryption [XML ENC] for the case of XML encoded bodies.

For JSON encryption:

• If the complete body of the message will be encrypted the complete plain text

content of the body will be replaced by a JWE data structure representing the

encrypted (and integrity) protected content of the body.

• If only an attribute of a body of the message will be encrypted the plain text content

of this attribute will be replaced by a JWE data structure representing the encrypted

(and integrity protected) content of the attribute.

For XML encryption:

• If the complete body of the message will be encrypted the complete plain text

content of the body will be replaced by an XML element representing the encrypted

(and integrity protected) content of the body.

• If only an element of a body of the message will be encrypted the plain text content

of this element will be replaced by an XML element representing the encrypted

(and integrity protected) content of the element.

Remark: The protection of the integrity of the encrypted content depends on the algorithm

used for the encryption. If A256GCM is used the integrity of the content is protected in addition

to the encryption of the content.

Only key encryption will be used as key management mode. A randomly generated CEK

(content encryption key) is used for the encryption of the plain text using a symmetric

encryption algorithm. A public key of the receiver is used for the encryption of the CEK using

an asymmetric encryption algorithm.

For the current version of this specification only the following encryption algorithms may be

used (see also [RFC7518] and [XML ENC]):

• A256GCM/AES256-GCM: Symmetric AES using the Galois/Counter mode of

operation for the encryption of the plain text. For this the CEK shall be a 256-bit

AES key.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 54

 (ref. License Notice for full license conditions)

• RSAES-OAEP: Asymmetric RSA with OAEP padding for the encryption of the

CEK. MGF1 with SHA-1 mask generation function shall be used.

For JSON encryption only JWE Compact Serialisation according to section 3.1 of [RFC7516]

is used.

Remark: It is possible that an ASPSP or a scheme mandates the support and usage of further

encryption algorithms.

7.2.2 Extension to the http message

7.2.2.1 Path

None.

7.2.2.2 Query parameters

None.

7.2.2.3 Header parameters

If (parts of) the body contains encrypted information the following header parameters may be

added to the header of the HTTP request or response message:

Attribute Type Condition Description

Body-Enc-

Profile

String Conditional Indicates the encryption profile used for the

encryption of (parts of) the body.

Body-Enc-List List of

names

 Optional Contains a List of names of data elements/

attributes of the body which contain encrypted

information.

Table 12: Header parameters to indicate the encryption of (parts of) the body.

Body-Enc-Profile

This parameter indicates the profile used for the encryption of (parts of) the message

body. Currently only the values

• JWE_CS for "JSON Web Encryption using Compact Serialization" and

• XML_ENC for "XML Encryption" are supported.

Future versions of the specification may support further values for the encryption

profile.

Note: This header parameter shall exist if encryption of the body or parts of the body

is used.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 55

 (ref. License Notice for full license conditions)

Body-Enc-List

This parameter indicates which of the data elements/attributes of the body contain

encrypted content. Example: ["password"]. If this parameter equals ["BODY"], the

complete body of the message will be encrypted.

If this parameter is missing it has to be indicated by some other means which parts of

the body contain encrypted information. For example, the name of a data

element/attribute may by itself indicate that the content is encrypted, like for example

the attribute encryptedPassword.

7.2.2.4 Body

If the header parameter Body-Enc-List contains the name of a data element/attribute of the

message body or if the name of a data element/attribute indicates that the content has to be

encrypted, the plain text content of this data element/attribute has to be exchanged by

• (in the case of JSON encoding) the JWE built over using plain text content of that

data element/attribute as described in section 7.2.3, or

• (in the case of XML encoding) the EncryptedElementTag element build based on

the plain text content of that element as described in section 7.2.4.

If the header parameter Body-Enc-List equals ["BODY"] the plain text of the complete body

has to be exchanged by

• (in the case of JSON encoding) the JWE built using the complete plain text content

of the message body as described in section 7.2.3, or

• (in the case of XML encoding) the EncryptedBody element build based on the plain

text XML body as described in section 7.2.4.

For JSON encoding encryption can only be used for special attributes for which the message

definition allows strings without further restrictions.

For XML encoding encryption can only be used for special elements for which the message

definition allows the EncryptedElementTag element as content without further restrictions.

7.2.3 How to build a JWE

For the current version of this specification only Compact Serialisation according to section

3.1 of [RFC7516] is used. In this case the JWE is a string built by the concatenation of the

following base64url encoded elements:

BASE64URL(UTF8(JWE Protected Header)) || '.' ||

BASE64URL(JWE Encrypted KEY) || '.' ||

BASE64URL(JWE Initialisation Vector) || '.' ||

BASE64URL(JWE Ciphertext) || '.' ||

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 56

 (ref. License Notice for full license conditions)

BASE64URL(Authentication Tag)

The single elements are built as follows:

JWE Protected Header

The JWE Protected Header is a JSON structure with the following elements:

Element Type Condition Description

alg String Mandatory Algorithm to be used for the encryption of the

content encryption key (CEK).

For the current version of this specification only the

value RSAES-OAEP is supported.

enc String Mandatory Algorithm to be used for the encryption of the plain

text using the CEK.

For the current version of this specification only the

value A256GCM is supported.

x5c JSON {Or The "x5c" (X.509 certificate chain) Header

Parameter contains the X.509 public key certificate

or certificate chain corresponding to the key used to

encrypt the CEK. The certificate or certificate chain

is represented as a JSON array of certificate value

strings. Each string in the array is a base64-

encoded (not base64url-encoded) DER PKIX

certificate value. The certificate containing the

public key corresponding to the key used to the

encrypt the CEK MUST be the first certificate. This

MAY be followed by additional certificates, with

each subsequent certificate being the one used to

certify the previous one. The recipient MUST

validate the certificate chain according to RFC 5280

and consider the certificate or certificate chain to be

invalid if any validation failure occurs.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 57

 (ref. License Notice for full license conditions)

Element Type Condition Description

X5u URI Or} The "x5u" (X.509 URL) Header Parameter is a URI

that refers to a resource for the X.509 public key

certificate or certificate chain corresponding to the

key used to encrypt the CEK. The identified

resource MUST provide a representation of the

certificate or certificate chain that conforms to RFC

5280 in PEM-encoded form, with each certificate

delimited as specified in Section 6.1 of RFC 4945.

The certificate containing the public key used to

encrypt the CEK MUST be the first certificate. This

MAY be followed by additional certificates, with

each subsequent certificate being the one used to

certify the previous one. The protocol used to

acquire the resource MUST provide integrity

protection; an HTTP GET request to retrieve the

certificate MUST use TLS; and the identity of the

server MUST be validated, as per Section 6 of RFC

6125.

Table 13: JSON structure of a JWE Protected Header.

Remarks:

• One of the elements x5u or x5c shall be contained in the JWE Protected Header.

• The ASPSP may define further restriction for the content of the elements x5u and

x5c. For example, the ASPSP may require that the element x5c is contained and

that this element contains only the certificate itself but not the complete certificate

chain. These additional requirements have to be described by the ASPSP specific

documentation.

JWE Encrypted Key

The sender of the message shall generate a random content encryption key (CEK). This CEK

shall be usable with the algorithm indicated by the element "enc" as part of the JWE protected

header.

For the current version of this specification the CEK shall be a 256-bit AES key.

The JWE Encrypted Key equals the encrypted CEK with the algorithm indicated by the

element "alg" as part of the JWE protected header using the public key of the receiver of the

message.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 58

 (ref. License Notice for full license conditions)

JWE Initialisation Vector

The sender of the message shall generate a random JWE Initialisation Vector. This

initialisation vector shall be usable with the algorithm indicated by the element "enc" as part of

the JWE protected header.

For the current version of this specification the JWE Initialisation Vector shall be a 128 bit long

random value.

JWE Ciphertext

The plain text of the complete body or of the data element/attribute of the body has to be

encrypted with the CEK using the encryption algorithm given by the element "enc" of the JWE

Protected Header. For the current version of this specification only A256GCM is supported,

i.e. the Galois/Counter mode of operation [GCMencryp]. By this the plain text is not only

encrypted but also integrity protected.

For the Galois/Counter mode of operation "additional authenticated data" (AAD) is needed.

This is defined by the following:

AAD = ASCII(BASE64URL(UTF8(JWE Protected Header)))

JWE Authentication Tag

The output of the Galois/Counter mode of operation of the AES algorithm delivers not only the

ciphertext but also a 128-bit long authentication tag. This 128-bit output has to be used as

JWE Authentication Tag.

7.2.4 How to build an EncryptedBody or EncryptedElementTag element

If the complete body has to be encrypted the corresponding encrypted body has the following

content:

<EncryptedBody>

 <EncryptedData>

 See below

 </EncryptedData>

 <EncryptedKey ID="ID_CEK">

 See below

 </EncryptedKey>

</EncryptedBody>

Table 14: Elements of an encrypted XML message body

If an element with the tag ElementTag has to be encrypted the corresponding encrypted

element has the following content:

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 59

 (ref. License Notice for full license conditions)

<EncryptedElementTag>

 <EncryptedData>

 See below

 </EncryptedData>

 <EncryptedKey ID="ID_CEK">

 See below

 </EncryptedKey>

</EncryptedElementTag>

Table 15: Elements of an encrypted XML element with tag ElementTag

Element EncryptedData

This element contains the encrypted data and shall contain the following:

<EncryptedData>

 <EncryptionMethod Algorithm="URI_encryptionAlgorithm" />

 <KeyInfo>

 <RetrivalMethod URI="#ID_CEK"

 Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>

 </KeyInfo>

 <CipherData>

 <CipherValue>

 Base 64 coded cipher value of the encrypted content

 </CiperValue>

 </CipherData>

</EncryptedData>

URI_encryptionAlgorithm identifies the (symmetric encryption) algorithm which has been used

for the calculation of the cipher value using the symmetric CEK (content encryption key). This

CEK can be retrieved from the element EncryptedKey identified by "ID=ID_CEK".

URI_encryptionAlgorithm = http://www.w3.org/2009/xmlenc11#aes256-gcm has to be

supported, i.e. AES encryption with 256-bit CEK using the Galois/Counter mode of operation

for the encryption of the plain text. An ASPSP can mandate the usage of another algorithm.

Element EncryptedKey

This element contains the encrypted CEK (content encryption key) and shall contain the

following:

http://www.w3.org/2001/04/xmlenc#EncryptedKey
http://www.w3.org/2009/xmlenc11#aes256-gcm

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 60

 (ref. License Notice for full license conditions)

<EncryptedKey ID="ID_CEK">

 <EncryptionMethod Algorithm="URI_CEK_encryptionAlg" />

 <KeyInfo>

 <X509Data>

 <X509Certificate>

 base64 coded X.509 encryption certificate

 </X509Certificate>

 </X509Data>

 </KeyInfo>

 <CipherData>

 <CipherValue>

 Base 64 coded cipher value of the encrypted CEK

 </CiperValue>

 </CipherData>

</EncryptedKey>

URI_CEK_encryptionAlg identifies the (asymmetric encryption) algorithm which has been

used for the calculation of the cipher value of the CEK using the public key of the receiver of

the message. X.509 certificate identifying this public key is contained in the sub-element

KeyInfo.

URI_CEK_encryptionAlg = http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p has to be

supported, i.e. RSA-OAEP encryption using MGF1 with SHA-1 mask generation function. An

ASPSP can mandate the usage of another algorithm.

The element X509Data shall contain the X.509 certificate containing the

public key of the receiver of the message used to encrypt the CEK.

7.2.5 Exchange of certificates with public encryption keys

For the encryption of (parts of) the body of an HTTP-message it is necessary that the sender

of the message knows the public key of the receiver of the message to be used to encrypt the

CEK to be used for the encryption of the content. This public key has to be exchanged as part

of a corresponding certificate over this public key. The openFinance API Framework supports

two different mechanisms to exchange these encryption certificates.

Exchange of the certificate within an attribute of a message body:

A message may contain the following attribute if the sender of this message wishes that the

receiver of this message will encrypt (parts of) the body of following messages:

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 61

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

encryptionCertificate String Optional The certificate to be used by the receiver

for encryption of (parts of) the body of a

following message

The attribute encryptionCertificate contains the X.509 public key certificate or certificate chain

corresponding to the public key to be used to encrypt the CEK for the encryption of (parts of)

the body of following messages. The certificate or certificate chain is represented as a JSON

array of certificate value strings. Each string in the array is a base64-encoded (not base64url-

encoded) DER PKIX certificate value. The certificate containing the public key corresponding

to the key used to the encrypt the CEK MUST be the first certificate. This MAY be followed by

additional certificates, with each subsequent certificate being the one used to certify the

previous one.

The ASPSP may define further restrictions such that this attribute may contain only the

certificate of the public key itself but not a certificate chain.

Exchange using a special link to the certificate:

The "_links" attribute of a message may contain the following special link if the sender of this

message wishes that the receiver of this message will encrypt (parts of) the body of following

messages:

Attribute Type Condition Description

_links String Optional May contain the following special link:

"encryptionCertificates": {"href":…}

The href-link is an URI that refers to a resource for the X.509 public key certificate or certificate

chain corresponding to the public key to be used to encrypt the CEK for the encryption of

(parts of) the body of following messages. The identified resource MUST provide a

representation of the certificate or certificate chain that conforms to RFC 5280 in PEM-

encoded form, with each certificate delimited as specified in Section 6.1 of RFC 4945. The

certificate containing the public key to be used for the encryption of the CEK MUST be the first

certificate. This MAY be followed by additional certificates, with each subsequent certificate

being the one used to certify the previous one.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 62

 (ref. License Notice for full license conditions)

8 Strong customer authentication of a PSU

Remark: The term PSU is used for the user of a services even in the case of services which

are not related to a payment service.

8.1 Optional Usage of OAuth2 for PSU Authentication or Authorisation

The XS2A API respectively the openFinance APIs will allow an ASPSP to implement OAuth2

as a support for the authorisation of the PSU towards the API Client for several services. In

this case, the API Client will be the client, the PSU the resource owner and the ASPSP will be

the resource server in the abstract OAuth2 model.

This specification supports two ways of integrating OAuth2. The first support is an

authentication of a PSU in a pre-step, translating this authentication into an access token to

be used at the XS2A interface or openFinance API afterwards. This usage of OAuth2 will be

referred to in this specification as "if OAuth2 has been used as PSU authentication". Further

details shall be defined in the documentation of the ASPSP of this XS2A interface or

openFinance API.

Remark: When implementing the OAuth pre-step, the requirements on e.g. registration steps

or no mandatory two SCA application in specific PIS only scenarios as defined by [EBA-OP2]

should be recognised by the ASPSP.

The second option to integrate OAuth2 is an integration as an OAuth2 SCA Approach to be

used for authorisation of transactions. In all services, OAuth2 will in this option be used in an

integrated way, by using the following steps:

Integrated OAuth for the authorisation of transactions which are reflected as resources in the

related services endpoints of the API:

1.) The transaction data is posted to the corresponding service endpoint of the XS2A API

resp. the openFinance API. This service endpoint might be extended by a product-

type, e.g. sepa-credit-transfers in the case of the /payments endpoint.

2.) The OAuth2 protocol is used with the "Authorization Code Grant" flow to get the

authorisation of the PSU for the related transaction, while using the "scope" attribute

in OAuth2 to refer to the data from Step 1.).

3.) The corresponding transaction is then automatically initiated by the ASPSP after a

successful authorisation by the PSU, if no further interaction between API Client and

ASPSP is required.

NOTE: For AIS services, the API Client needs to get a consent resource authorised first via

the routine described above. The API Client then can use the access token received during

the OAuth2 protocol to access the related accounts endpoint for authorised account

information for the validity period of the authorised consent resp. the validity period of the

technical access token.

For Step 2.), details are described in Section 8.8.

When using OAuth2, the XS2A API or openFinance API calls will work with an access token

instead of using the PSU credentials.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 63

 (ref. License Notice for full license conditions)

8.2 Header Parameter for PSU Context Data

The following data elements are forwarding information about the interface between PSU and

API Client to enhance the risk management procedures of the ASPSP integrated into SCA

resp. SCA exemption procedures. It is strongly recommended to send these data elements

within all Transaction Initiation Requests, that involve PSU authentication, e.g. in Payment

Initiation Requests.

Header parameters as defined in this section will not be repeated in the implementation

guidelines of service specifications to enhance document readability, but the implementation

guidelines will refer to this document in the relevant sections. However, the detailed

specifications of service calls via the related OpenAPI files will still contain all applicable

headers.

The only exception is where conditions other than "optional" apply on specific request

messages, e.g. for the PSU IP Address. More details might be provided in the data overview

within service definitions.

Attribute Format Condition Description

PSU-IP-Address String Conditional The forwarded IP Address header field consists of

the corresponding HTTP request IP Address field

between PSU and TPP. Conditions will be defined

within service specifications, If applicable.

PSU-IP-Port String Optional The forwarded IP Port header field consists of the

corresponding HTTP request IP Port field between

PSU and TPP, if available.

PSU-Accept String Optional The forwarded IP Accept header fields consist of

the corresponding HTTP request Accept header

fields between PSU and TPP, if available.

PSU-Accept-

Charset

String Optional see above

PSU-Accept-

Encoding

String Optional see above

PSU-Accept-

Language

String Optional see above

PSU-User-Agent String Optional The forwarded Agent header field of the HTTP

request between PSU and TPP, if available.

PSU-Http-

Method

String Optional HTTP method used at the PSU – TPP interface, if

available.

Valid values are:

• GET

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 64

 (ref. License Notice for full license conditions)

Attribute Format Condition Description

• POST

• PUT

• PATCH

• DELETE

PSU-Device-ID String Optional UUID (Universally Unique Identifier) or IMEI for a

device, which is used by the PSU, if available.

UUID/IMEI identifies either a device or a device

dependant application installation. In case of an

installation identification this ID need to be

unaltered until removal from device.

PSU-Geo-

Location

Geo

Location

Optional The forwarded Geo Location of the corresponding

HTTP request between PSU and TPP if available.

Note: Information about the interface between PSU and API Client might be used by the

ASPSP as input for his fraud detection and risk management systems. Some ASPSPs use

this information also to exclude certain authentication methods (for example some ASPSPs

do not allow to receive an OTP by SMS on the same smartphone used also for the transaction

itself). In addition, the ASPSP might need to receive specific device related information to be

able to support an optimised app-2-app redirection procedure for the API Client. For these

reasons it is highly recommended that an API Client includes all of this information in the

related Transaction Initiation Request messages. Missing information may result in an

assessment of the user device as not useable for the authentication method or in a

classification of the current transaction as a "higher risk transaction" e.g. due to session

attacks. By this, the probability of a rejection of that transaction due to the result of fraud

detection and/or risk management might be increased.

Remark: These requirements do not apply in a "direct access" scenario, where no third party

provider is involved and where the ASPSP can detect the related information directly from the

then PSU/ASPSP interface.

8.3 Header Parameters for PSU Identification Data

The openFinance API Framework supports the transmission of PSU identification data within

request parameters for all Transaction Initiation Request messages. The ASPSP might

mandate these elements, which then needs to be reflected in the related ASPSP

documentation.

Header parameters as defined in this section will not be repeated in the implementation

guidelines of service specifications to enhance document readability, but the implementation

guidelines will refer to this document in the relevant sections. However, the detailed

specifications of service calls via the related OpenAPI files will still contain all applicable

headers.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 65

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

PSU-ID Max140Text Conditional Client ID of the PSU in the ASPSP client interface.

Might be mandated in the ASPSP’s

documentation.

It might be contained even if an Oauth2 based

authentication was performed in a pre-step. In this

case the ASPSP might check whether PSU-ID

and token match, according to ASPSP

documentation.

PSU-ID-Type Max35Text Conditional Type of the PSU-ID; needed in scenarios where

PSUs have several PSU-IDs as access possibility.

In this case, the mean and use are then defined in

the ASPSP’s documentation.

PSU-

Corporate-ID

Max140Text Conditional Identification of a Corporate in the Online

Channels

Might be mandated in the ASPSP’s

documentation. Only used in a corporate context.

PSU-

Corporate-ID-

Type

Max35Text Conditional This is describing the type of the identification

needed by the ASPSP to identify the PSU-

Corporate-ID content as used in online channels.

Typically, this is a proprietary definition.

Mean and use is defined in the ASPSP’s

documentation. Only used in a corporate context.

Note: If the ASPSP is mandating PSU identification related attributes, then the ASPSP needs

to assure to be compliant with related sections from [EBA-OP2] if PSD2 compliance related

services are addressed.

Note: The ASPSP might support special characters for PSU identification in their client

interfaces. To support this on API level, the recommended character set for PSU identification

related header parameters is ISO8859-1 based. In addition to the plain ISO8859-1 encoding

following the HTTP specification, the ASPSP might offer a Base64 encoding. In the latter

variant, this results in the following expression:

=?ISO-8859-1?B?<Base64 coded ISO-8859-1 String>?=

An UTF-8 encoding of header parameters used by the API Client thus might lead to

rejections with Message Code PSU_CREDENTIALS_INVALID.

Deviations from these recommendations should be documented in detail by the ASPSP.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 66

 (ref. License Notice for full license conditions)

8.4 Header Parameters for strong customer authentication

Header parameters as defined in this section will not be repeated in the implementation

guidelines of service specifications to enhance document readability, but the implementation

guidelines will refer to this document in the relevant sections. However, the detailed

specifications of service calls via the related Open API files will still contain all applicable

headers.

8.4.1 Request Header Parameters Steering SCA Approaches

The following request headers might be used by an API Client in a Transaction Initiation

Request to communicate SCA preferences to the ASPSP for transaction authorisation.

Attribute Type Condition Description

Client-SCA-

Approach-

Preference

Max35Text Optional A comma separated list of attributes, where the

first entry will have a higher priority than the next

or to every SCA Approach which is not indicated

at all, e.g.

"decoupled, redirect, embedded"

or

"decoupled"

This attribute may be ignored by the ASPSP

Client-

Redirect-URI

String Conditional URI of the TPP, where the transaction flow shall

be redirected to after a Redirect. Mandated for the

Redirect SCA Approach. See Section 8.7 for

further requirements on this header.

It is recommended to always use this header field.

Client-Nok-

Redirect-URI

String Optional If this URI is contained, the TPP is asking to

redirect the transaction flow to this address

instead of the Client-Redirect-URI in case of a

negative result of the redirect SCA method. This

might be ignored by the ASPSP.

See Section 8.7 for further requirements on this

header.

Client-Explicit-

Authorisation-

Preferred

Boolean Optional If it equals "true", the API Client prefers to start the

authorisation process separately, e.g. because of

the usage of a signing basket or because of

asynchronous authorisation. This preference

might be ignored by the ASPSP, if a signing

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 67

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

basket is not supported as functionality or if

asynchronous authorisation is not supported.

If it equals "false" or if the parameter is not used,

there is no preference of the API Client. This

especially indicates that the API Client assumes a

direct authorisation of the transaction in the next

step, without using a signing basket.

8.4.2 Related Response Headers

The following header is used by the ASPSP to transmit decisions of the chosen SCA Approach

to the third party.

Attribute Type Condition Description

ASPSP-SCA-

Approach

String Conditional This data element must be contained, if the

SCA Approach is already fixed. Possible

values are:

• EMBEDDED

• DECOUPLED

• REDIRECT

• ASPSP-CHANNEL

The OAuth SCA approach will be subsumed

by REDIRECT.

8.5 Embedded SCA Approach

The Embedded SCA Approach is defined as the scenario where all PSU credentials are

transmitted via the XS2A API resp. the openFinance API. PSU identification data are

transported using the related header parameters as defined in Section 8.3. After a Transaction

Initiation Request and Response, an authorisation sub-resource is either implicitly generated

by the ASPSP or needs to be explicitly created by the API Client in a next step, cp. Section 9.1.

The API calls to create an authorisation sub-resource as well as the API calls to transmit PSU

credentials to the related authorisation resource within an Embedded SCA Approach are

defined in Section 9.4 and Section 9.5. The specific functions to be used will always be

indicated by related hyperlinks presented by the ASPSP before.

8.6 Decoupled SCA Approach

The Decoupled SCA Approach differs from the Embedded SCA Approach by using an ASPSP

authentication app for the strong customer authentication and dynamic linking if applicable.

The app is used by the PSU also for authentication of transaction in the online channels. Since

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 68

 (ref. License Notice for full license conditions)

the XS2A API resp. the openFinance API is not involved in this app authentication, no

authentication specific API support is defined in this case.

NOTE: A more standardised security profile based on re-direct like the FAPI CIBA profile are

not supported yet by the openFinance API Framework.

As a hybrid between Embedded and Decoupled SCA approach, the ASPSP might require the

PSU to transmit a first factor (a password) first via the XS2A API resp. the openFinance API

and only afterwards authentication with a second factor via the Decoupled Approach. The

transmission of the password is handled as in the Embedded SCA Approach via the related

authorisation sub resource and the API calls defined in Section 9.4. Such an implementation

would still be called a Decoupled SCA Approach in the openFinance API Framework.

8.7 Redirect SCA Approach

In the Redirect SCA Approach, the TPP will at some point receive a "scaRedirect" link in the

response from the ASPSP. The link leads to an authorisation page related to the transaction

to be authorised and to the TPP must redirect the PSU agent to that link as a next step. When

accessing the page, the PSU will authenticate himself with the related PSU credentials, review

the presented information of the transaction and can finalise the authorisation from there.

When the authorisation has been finalised by the PSU, the PSU agent is redirected again by

the ASPSP to the Client-Redirect-URI, which has been submitted within the related

Transaction Initiation Request. If the authorisation was not successful, the ASPSP may use

the Client-Nok-Redirect-URI submitted in the same call, if supported.

Refer to Section 5.3 for requirements on TPP redirection links.

NOTE: The "scaRedirect" link may include query parameters. Due to definitions for a potential

later confirmation flow, cp. Section 9.8.2.2, ASPSPs shall not include a query parameter

named "state" in their "scaRedirect" links. Such a parameter is reserved for the TPP to be

used for session control.

Remark for Future: For migration reasons, this specification mandates the TPP to keep the

Client-Redirect-URI used within all authorisation processes for a specific transaction during

the lifecycle of this transaction constant. This might be removed in the next version of the

specification.

8.8 OAuth SCA Approach

The OAuth2 protocol as used optionally for this API is defined in [RFC6749]. In this section,

additional requirements on the protocol are defined. The related protocol shall be used by the

TPP, if the ASPSP is transmitting the link of type "scaOAuth".

NOTE: A more standardised security profile based on re-direct like the FAPI PAR profile are

not supported yet by the openFinance API Framework.

The requirements on the data exchange between the TPP and the OAuth Server of the ASPSP

regarding the transport layer are identical to the data exchange requirements between TPP

and the XS2A Interface resp. the openFinance API, cp. Section 5 .

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 69

 (ref. License Notice for full license conditions)

Note: Specifically, the requirements on using MTLS also apply to the usage of the OAuth2

protocol. However, the general requirements on the application layer such as e.g. signing of

Requests (see Section 6) do not apply to the OAuth2 messages.

The response type "code" and the grant types "authorization_code" and "refresh_token" are

recommended by this specification. It is further strongly recommended to TPPs and ASPSPs

to follow the security best practices defined in [OA-SecTop].

Note: In case of the OAuth SCA Approach, the TPP has to generate in addition a nonce for

the challenge parameter. This has also to be bound to the session of the user agent.

The ASPSP is required to provide TPPs with configuration data conforming to the "OAuth 2.0

Authorisation Server Metadata" specification.

8.8.1 Authorization Request

For the "authorization request" (see [RFC6749], section 4.1.1) to the OAuth2authorization

endpoint provided in the Server Metadata, the following parameters are defined:

Query Parameters

Attribute Condition Description

response_type Mandatory "code" is recommended as response type.

client_id Mandatory organizationIdentifier as provided in the eIDAS

certificate.

PSD2 related access clients, the

organizationIdentifier attribute shall contain

information using the following structure in the

presented order:

- "PSD" as 3 character legal person identity

type reference;

- 2 character ISO 3166 country code

representing the NCA country;

- hyphen-minus "-" and

- 2-8 character NCA identifier (A-Z uppercase

only, no separator)

- hyphen-minus "-" and

- PSP identifier (authorization number as

specified by NCA).

For the usage in the context of premium services, a

related API Access Scheme might define other

requirements.

scope Mandatory PIS: The scope is the reference to the payment

resource in the form "PIS:<paymentId>".

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 70

 (ref. License Notice for full license conditions)

Attribute Condition Description

AIS: The scope is the reference to the consent

resource for account access in the form

"AIS:<consentId>"

PIIS: The scope is the reference to the consent

resource for granting consent to confirmation of

funds in the form "PIIS:<consentId>".

Signing Basket Services: The scope is the reference

to the signing basket resource for authorisation of a

bundle of access functions in the form

"SB:<basketId>.

Subscriptions: The scope is the reference to the

subscription resource or subscription entry sub-

resource in the form "SUB:<subscriptionId>" resp.

"SUB-E"<subscriptionId>-<entryId>."

Mandate Services: The scope is the reference to the

mandate resource in the form "MAN:<resoruceId>",

where the resourceId is the resource identification of

the related mandate.

Note: The resource ids chosen by the ASPSP need

to be unique to avoid resource conflicts during the

SCA process.

state Mandatory A dynamical value set by the TPP and used to

prevent XSRF attacks.

redirect_uri Mandatory the URI of the TPP where the OAuth2 server is

redirecting the PSU's user agent after the

authorization.

code_challenge Mandatory PKCE challenge according to cryptographic RFC

7636 (https://tools.ietf.org/html/rfc7636) used to

prevent code injection attacks.

code_challenge_method Optional Code verifier transformation method, is "S256" or

"plain". "S256" is recommended by this

specification.

Example

GET /authorize?response_type=code&client_id=PSDES-BDE-3DFD21 &

scope=ais%3A3d9a81b3-a47d-4130-8765-a9c0ff861100+offline_access&

state= S8NJ7uqk5fY4EjNvP_G_FtyJu6pUsvH9jsYni9dMAJw&

https://tools/

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 71

 (ref. License Notice for full license conditions)

redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb&

code_challenge_method="S256"

code_challenge=5c305578f8f19b2dcdb6c3c955c0aa709782590b4642eb890b97e43917cd

0f36 HTTP/1.1

 Host: api.testbank.com

8.8.2 Authorization Response

The Authorization Response (see [RFC6749], section 4.1.2) of the ASPSP will deliver the

following data:

Remark: As the request is not sent by the TPP but the PSU user agent, it will not be secured

by the TPP's QWAC.

http Response Code

302

Query Parameters

Attribute Condition Description

Location: Mandatory redirect URI of the API Client

code Mandatory Authorisation code

state Mandatory Same value as for the request.

Example

HTTP/1.1 302 Found

Location: https://client.example.com/cb

?code=SplxlOBeZQQYbYS6WxSbIA

&state=S8NJ7uqk5fY4EjNvP_G_FtyJu6pUsvH9jsYni9dMAJw

8.8.3 Access Token Request

As described in [RFC6749], section 4.1.3, the TPP sends a POST request to the token

endpoint in order to exchange the authorization code provided in the authorization response

for an access token and, optionally, a refresh token. The following parameters are used:

Request Parameters

Attribute Condition Description

grant_type Mandatory "authorization_code" is recommended as response type.

https://client.example.com/cb

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 72

 (ref. License Notice for full license conditions)

Attribute Condition Description

client_id Mandatory cp. Definition in Section 8.8.1

code Mandatory Authorization code from the authorization response

redirect_uri Mandatory the exact uri of the TPP where the OAuth2 server redirected the

user agent to for this particular transaction

code_verifier Mandatory PKCE verifier according to cryptographic RFC 7636

(https://tools.ietf.org/html/rfc7636) used to prevent code injection

attacks.

Example

POST /token HTTP/1.1

Host: https://api.testbank.com

Content-Type: application/x-www-form-urlencoded

client_id=PSDES-BDE-3DFD21

&grant_type=authorization_code

&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri= https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

&code_verifier=7814hj4hjai87qqhjz9hahdeu9qu771367647864676787878

The TPP is authenticated during this request by utilising "OAuth 2.0 Mutual TLS Client

Authentication and Certificate Bound Access Tokens" (see [RFC 8705]) in conjunction with

the TPP’s eIDAS certificate.

8.8.4 Access Token Response

The ASPSPS responds with the following parameters:

Response Parameters

Attribute Condition Description

access_token Mandatory Access Token bound to the scope as requested in the

authorisation request and confirmed by the PSU.

token_type Mandatory Set to "Bearer"

expires_in Optional The lifetime of the access token in seconds

refresh_token Optional Refresh Token, which can be utilised to obtain a fresh access

tokens in case the previous access token expired or was revoked.

Especially useful in the context of AIS.

file://///BN-ADM-VSRV-FS1.intern.src/Firmendaten/CZS/Europa/_Berlin-Group/NextGen%20Taskforce/PSD2%20Interface/Implementation%20Guidelines/36%20(https:/t
file://///BN-ADM-VSRV-FS1.intern.src/Firmendaten/CZS/Europa/_Berlin-Group/NextGen%20Taskforce/PSD2%20Interface/Implementation%20Guidelines/36%20(https:/t
file://///BN-ADM-VSRV-FS1.intern.src/Firmendaten/CZS/Europa/_Berlin-Group/NextGen%20Taskforce/PSD2%20Interface/Implementation%20Guidelines/api.testbank.com

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 73

 (ref. License Notice for full license conditions)

Attribute Condition Description

scope Mandatory the scope of the access token

Example

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

Pragma: no-cache

{

 "access_token": "SlAV32hkKG",

 "token_type": "Bearer",

 "expires_in": 3600,

 "refresh_token": "tGzv3JokF0XG5Qx2TlKWIA",

 "scope": "exampleScope"

}

8.8.5 Refresh Token Grant Type

The ASPSP may issue refresh tokens at its discretion, e.g. if an AISP uses the standard scope

value "offline_access" or if the recurringIndicator is set to true.

8.8.6 API Requests

When using the OAuth SCA approach, subsequent API requests are being authorised using

the respective OAuth Access Token. The Access Token is sent to the API using the

“Authorization” Header and the “Bearer” authorization scheme as defined in RFC 6750.

This is an example API request

 GET /psd2/v2/payments/sepa-credit-transfers/3d9a81b3-a47d-4130-8765-

a9c0ff861100/status HTTP/1.1

 Host: https://api.testbank.com

 Authorization: Bearer SlAV32hkKG

8.9 ASPSP Channel SCA Approach

The ASPSP might offer to authorise a transaction not within the session

• started with the first resource data submission of the ASPSP within a Transaction

Initiation procedure, or

• started with the POST /authorisations request

but instead later in other authorisation channels of the ASPSP like the online channels.

st:%20https:/

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 74

 (ref. License Notice for full license conditions)

This SCA approach is addressed by the API Client by using the term "ASPSP-CHANNEL" in

the attribute "Client-SCA-Approach-Preference".2

NOTE: The new ASPSP-SCA-Approach "ASPSP-CHANNEL" might be changed later on

dynamically to e.g. "Redirect" by the API Client in case of re-starting the authorisation

procedure explicitly via the API. It just sticks to "ASPSP-SCA-Approach", if the related

transaction is authorised in a different authorisation channel of the ASPSP (e.g. online

channel).

2 This SCA approach is added to support extended services, where asynchronous SCA approaches

are provided. This is not supposed to be supported for compliance services under PSD2 which cover

synchronous authorisation processes only.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 75

 (ref. License Notice for full license conditions)

9 Authorisation Processes used commonly in all Services

Many business transactions need authorisation processes to be initiated via the openFinance

API resp. the XS2A API. Authorisation processes include PSU authentication supported in the

openFinance API Framework via the different SCA approaches as defined in Section 8. A very

specific business transaction is a cancellation process for a transaction resource via the API

where in some cases (e.g. payment initiation) also an authorisation process via SCA by the

PSU might be mandated.

These authorisations are reflected in the openFinance API Framework in two perspectives:

• The impact of an authorisation process on an existing transaction resource, which

will lead to new sub-resources of the addressed transaction resource as defined in

Section 9.1 and 9.2.

• The impact on access methods for the related authorisation or cancellation

authorisation endpoints as defined in Section 9.3 ff.

The description in this section is generic by defining the access methods in detail but

abstractly. The related endpoints will not be documented in the implementation guidelines of

service specification to enhance document readability. However, detailed specifications

including the authorisation endpoints will be available via the related OpenAPI files.

Remark: The API design differs across the various SCA approaches (Embedded, Redirect,

OAuth2 or Decoupled, cp. Section 8), but mostly between the Embedded SCA Approach and

the others, since the Embedded SCA Approach demands the support of the full SCA

complexity within the API itself. For that reason, all data or processes which are only needed

for the Embedded SCA Approach are shown in a light blue background, to increase the

readability of the specification.

9.1 Authorisation Endpoints

The openFinance API Framework is supporting dedicated authorisation endpoints in order to

handle transaction authorisation by PSUs. These authorisation endpoints are supporting the

following features in a common structured way

• multiple level SCA, where a transaction needs an authorisation by more than one

PSU, e.g. in a corporate context,

• signing of a group of transactions with one SCA, as it is offered by ASPSPs today

in online banking, cp. the definition of signing baskets in Section 10

• signing of a group of transactions with multi-level SCA, where this group of

transactions need an authorisation by more than one PSU, e.g. in a corporate

context.

To support this, the resources resulting from the submission of transaction data, like payment

data or consent data are separated from authorisation (sub-)resources. For example, payment

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 76

 (ref. License Notice for full license conditions)

which needs to be signed n times then will end up in a payment resource with n SCA (sub-

)resources in a normal successful process.

The optional function of grouping several transactions for one common authorisation process

is supported by the signing-baskets endpoint, which might be offered by the ASPSP. If this

function is offered by an ASPSP, the API Client can first submit transaction data without

starting the authorisation. After having grouped the related transaction resources by using a

grouping command through the signing-baskets endpoint, the authorisation then can be

started by authorising this basket content. This results in a basket resource with the

corresponding authorisation sub-resource.

The following picture gives an overview on the abstract data model for the different scenarios

in the example of a payment:

Data model for a single payment
with one SCA

Data model for a single payment
with multiple SCA

Payment
resource

Auth. sub-
resource

Payment
resource

Auth. sub-
resource 1

Auth. sub-
resource n

Data model for the authorisation auf a group of transaction with multiple SCAs

Signing-
basket

resource

Auth. sub-
resource 1

Auth. sub-
resource n

Payment resource 1

Payment resource 2

Consent resource 1

grouping

Remark: When offering the signing basket function, the ASPSP might restrict the grouping

e.g.

• to payments as such,

• to individual payments,

• to the same payment product.

This restriction on groupings will then be detailed in the ASPSP's documentation.

Note: The grouping of transaction is only a "signing vehicle", bundling authorisation processes

for the grouped transactions. The authorisation rules for transactions can be very complex in

a corporate context. The signing basket gets the status of being fully authorised as soon as

all grouped transactions have been successfully authorised by the applied SCA mechanism.

A transaction with less authorisation requirements might then be authorised earlier than the

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 77

 (ref. License Notice for full license conditions)

whole signing basket and also already processed. In addition, single transactions of the

signing basket could be authorised with additional SCAs directly on transaction level,

depending on the implementations of the ASPSPs – the signing basket is a non-exclusive

mechanism to bundle authorisations. Current implementations of this functionality differ in

Europe, specifically in a corporate context. For this reason, more complex functionality as

DELETE processes on partially authorised signing baskets are not supported yet.

Remark for Future: The upcoming versions of the specification might implement more

advanced functionality of the signing basket function and cancellation processes around it.

Optimisation process for the submission of e.g. single payments

The general model introduced above requires the API Client to start two sub-processes when

initiating a transaction. For example, in a payment initiation of a sepa credit transfer this would

result in

POST /payments/sepa-credit-transfers {payment data}

which is generating the payment resource and returns paymentId as a resource identification.

POST /payments/sepa-credit-transfers/paymentId/authorisations

is then starting the authorisation process with creating an authorisation sub-resource and

returning an authorisationId for addressing this sub-resource in the following.

Applying this requirement to all authorisations of transactions e.g. in the Redirect SCA

Approach would significantly augment the calls on the resulting API. For this reason, this

specification still enables the ASPSP to directly start e.g. a Redirect SCA processing after the

submission of transaction data, like e.g. a payment or a consent, if no other data from the API

Client has to be submitted anyhow. In this case, the ASPSP will create the related

authorisation sub-resources automatically and will give access to these sub-resources to the

API Client by returning corresponding hyperlinks, cp. Section 3.6. As a consequence, the

authorisation status would still be provided by submitting the command

GET /payments/sepa-credit-

transfers/paymentId/authorisations/authorisationId,

where the authorisation resource with identification authorisationId has been created by the

ASPSP implicitly.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 78

 (ref. License Notice for full license conditions)

9.2 Transaction Cancellation Endpoints e.g. for Payments

The openFinance API Framework is supporting the cancellation of strongly protected

resources, like payment initiations or payment authorisations by PISPs. This process is divided

into two steps:

1. DELETE the corresponding resource.

2. Start an authorisation process for the cancellation by the PSU where needed by

submitting a

POST payments/sepa-credit-transfers/paymentId/cancellation-

authorisations

command.

The second step might be omitted, where a dedicated authorisation of the cancellation is not

foreseen by the ASPSP. The need to authorise the cancellation will be communicated by

sending corresponding hyperlinks to the API Client, cp. Section 3.6.

In the two-step approach, this cancellation process will be handled by cancellation-

authorisation sub-resources in analogy to the actual authorisations. The authorisation sub

resources will stay unchanged. The following picture shows the changes on resource level in

case of a scheduled payment:

Data model for a scheduled single payment
with one SCA

Data model for a scheduled single
payment which has been cancelled,
where a customer authorisation was
needed for cancellation

Scheduled
Payment
resource

Auth. sub-
resource

Payment
resource

Auth. sub-
resource

Cancellation
author. sub-

resource

Data model for a scheduled single
payment which has been cancelled,
where no dedicated customer authorisation was
needed for cancellation

Payment
resource

Auth. sub-
resource

Transaction
status changed to
CANC,
resource no longer
addressable

The corresponding original authorisation sub-resources stay unchanged.

For transactions, where a multilevel SCA is needed for authorisation, also a multilevel SCA

might be needed for cancellation, depending on ASPSP role management. In equivalence to

authorisation, the model would then be extended by more cancellation sub-resources.

NOTE: The logic of cancellation sub resources will apply also to other transactions, where a

cancellation via the API Client requires a cancellation authorisation by the PSU.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 79

 (ref. License Notice for full license conditions)

9.3 Access Methods for Authorisations

Processes on starting authorisations, update PSU identification or PSU authentication data

and explicit authorisation of transactions by using SCA are very similar in all services. The API

calls supporting these processes are described in the following independently from the

service/endpoint. These processes usually are used following a hyperlink of the ASPSP. The

usage is defined at the beginning of the following sections. The API access methods are

provided only in a schematic way in this document. The related OpenAPI files will provide the

actual access methods by instantiating the term {resource-path}/{resourceId} with the

addressed service, product types, where applicable, and the correct resource identification.

Thus, the following API access methods are supported for authorisation processes.

Endpoints/Resources Method Condition Description

{resource-

path}/{resourceId}/authorisa

tions

POST Mandatory Create an authorisation sub-resource

and start the authorisation process,

might in addition transmit

authentication and authorisation

related data. This method is iterated

n times for an n times SCA

authorisation in a corporate context,

each creating an own authorisation

sub-endpoint for the corresponding

PSU authorising the transaction.

The ASPSP might make the usage of

this access method unnecessary in

case of only one SCA process

needed, since the related

authorisation resource might be

automatically created by the ASPSP

after the submission of the resource

data with the first POST {resource-

path} call.

Section 9.4.

{resource-

path}/{resourceId}/authorisa

tions

GET Mandatory Read a list of all authorisation sub-

resources IDs which have been

created.

Section 9.6.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 80

 (ref. License Notice for full license conditions)

Endpoints/Resources Method Condition Description

{resource-

path}/{resourceId}/authorisa

tions/{authorisationId}

PUT Mandatory for

Embedded

SCA

Approach,

Conditional for

other

approaches

Update data on the authorisation

resource if needed. It may authorise

a payment within the Embedded SCA

Approach where needed.

Independently from the SCA

Approach it supports e.g. the

selection of the authentication

method and a non-SCA PSU

authentication.

Section 9.4.1, Section 9.5.

{resource-

path}/{resourceId}/authorisa

tions/{authorisationId}

PUT Conditional for

Redirect or

OAuth SCA

Approach

Update the authorisation resource

with a confirmation code to counter

potential session attacks, where

supported by ASPSPs.

Section 9.8.

{resource-

path}/{resourceId}/authorisa

tions/{authorisationId}

GET Mandatory Read the SCA status of the

authorisation.

Section 9.7.

{resource-

path}/{resourceId}/cancellati

on-authorisations

POST Optional Starts the authorisation of the

cancellation of the addressed

resource with resource identification

resourceId if mandated by the

ASPSP (i.e. the DELETE access

method is not sufficient) and if

applicable to the related service, and

received in product related timelines

(e.g. before end of business day for

scheduled payments of the last

business day before the scheduled

execution day).

NOTE: Such a cancellation

authorisation for now only applies to

payments. But the openFinance API

Framework allows to apply it to any

other service.

Section 9.4.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 81

 (ref. License Notice for full license conditions)

Endpoints/Resources Method Condition Description

{resource-

path}/{resourceId}/cancellati

on-authorisations

GET Optional Retrieve a list of all created

cancellation authorisation sub-

resources. If the POST command on

this endpoint is supported, then also

this GET method needs to be

supported.

Section 9.6.

{resource-

path}/{resourceId}/cancellati

on-

authorisations/{authorisatio

nId}

PUT Mandatory for

Embedded

SCA

Approach,

Conditional for

other

approaches

Update data on the cancellation

authorisation resource if needed. It

may authorise a cancellation of the

payment within the Embedded SCA

Approach where needed.

Independently from the SCA

Approach it supports e.g. the

selection of the authentication

method and a non-SCA PSU

authentication.

Section 9.4.1 and Section 9.5.

{resource-

path}/{resourceId}/cancelati

on-

authorisations/{authorisatio

nId}

GET Mandatory Read the SCA status of the

cancellation authorisation.

Section 9.7.

Remark for Future: The PUT HTTP methods might be adapted to technical PATCH methods

in a future version of the specification. A corresponding decision will reflect current market

practices and the work in ISO TC68/SC9/WG2 on Financial API services.

9.4 Start Authorisation Process

Usage

If the further processing of a resource reflecting a business transaction (e.g. a payment)

requires an authorisation of one or more PSUs, each authorisation is represented by an

authorisation sub-resource of that resource, cp. also Section 9.1 for the example of payment

initiation. This transaction resource has been created after the submission of Transaction

Initiation Request, cp. Section 2.2.5..

In some cases, an authorisation by the PSU is required, when an already existing and

authorised resource is to be cancelled. Currently, the only occasion of that situation is the

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 82

 (ref. License Notice for full license conditions)

cancellation of a payment. In such a case, a "Transaction Cancellation Request" (with

corresponding "Transaction Cancellation Response") has been sent by the API Client for an

already existing resource. This leads to a situation, where a "Cancelation-Authorisation" will

be created to represent the authorisation of the cancellation of the existing resource by the

PSU. Therefore, the Cancellation-Authorisation resources also are sub-resources of the

"Transaction" resource itself, cp. Section 9.2.

The "start authorisation process" is the process which creates a new authorisation or

cancellation-authorisation sub-resource. The related sub-resource is reflecting the PSU

authentication steps as authorisation process or cancellation authorisation process of the

PSU. Please note that all the processes and conditions are identical for authorisations and

cancellation-authorisations. The only difference appears in their respective names and effects

on the underlying resource. The "start authorisation process" appears in the following

scenarios:

• The ASPSP has indicated with a "startAuthorisation" hyperlink in the preceding

Transaction Initiation Response or Transaction Cancellation Response that an

explicit start of the authorisation process is needed by the API Client. The

"startAuthorisation" hyperlink can transport more information about data which

needs to be uploaded by using the extended forms

▪ "startAuthorisationWithPsuIdentfication",

▪ "startAuthorisationWithPsuAuthentication",

▪ "startAuthorisationWithEncryptedPsuAuthentication",

▪ "startAuthorisationWithAuthentciationMethodSelection"

▪ "startAuthorisationWithTransactionAuthorisation".

• The related business transaction or business transaction cancellation cannot yet

be executed since a multilevel SCA is mandated.

Call

POST /v2/{resource-path}/{resourceId}/{authorisation-category}

Starts an authorisation process or a cancellation authorisation process for the business

transaction reflected by the resource identified with resourceId, depending on the

authorisation category authorisations or cancellation-authorisations.

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/{product-type}, where

• {service} stands for the service type of the related

business transaction, e.g. /payments or /consents

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 83

 (ref. License Notice for full license conditions)

Attribute Type Description

• {product-type} stands for the product-type of the

related business transaction where applicable, e.g.

sepa-credit-transfers in the case of payments or

account-access in case of consents.

authorisation-

category

String The following two categories are supported:

• authorisations: used in case of an authorisation of

the related business transaction.

• cancellation-authorisations: used in case of

the cancellation authorisation of the related business

transaction. Used only if applicable to the addressed

{service}

resourceId String Resource identification of the related payment initiation,

signing basket, consent, subscription or other related business

transaction resource.

Query Parameters

No specific query parameters.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

PSU-ID String Conditional Client ID of the PSU in the ASPSP client interface.

Shall be transmitted if this Request is indicated by

"startAuthorisationWithPsuIdentification" or

"startAuthorisationWithPsuAuthentication" or

"startAuthorisationWithEncryptedPsuAuthentication"

and this field has not yet been transmitted before.

PSU-ID-Type String Conditional Type of the PSU-ID, needed in scenarios where

PSUs have several PSU-IDs as access possibility.

Shall be transmitted in this case, if this Request is

indicated by

"startAuthorisationWithPsuIdentification" or

"startAuthorisationWithPsuAuthentication" or

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 84

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

"startAuthorisationWithEncryptedPsuAuthentication"

and this field has not yet been transmitted before.

PSU-

Corporate-ID

String Conditional Identification of a Corporate in the Online Channels.

Shall be transmitted if this Request is indicated by

"startAuthorisationWithPsuIdentification" or

"startAuthorisationWithPsuAuthentication" or

"startAuthorisationWithEncryptedPsuAuthentication"

and this field has not yet been transmitted before,

and only where generally needed in a corporate

context.

PSU-

Corporate-ID-

Type

String Conditional This is describing the type of the identification

needed by the ASPSP to identify the PSU-

Corporate-ID content.

Shall be transmitted if this Request is indicated by

"startAuthorisationWithPsuIdentification". or

"startAuthorisationWithPsuAuthentication" or

"startAuthorisationWithEncryptedPsuAuthentication"

and this field has not yet been transmitted before.

Mean and use is defined in the ASPSP’s

documentation. Only used in a corporate context.

Authorization String Conditional Bearer Token. Is contained only, if an OAuth2 based

authentication was performed in a pre-step or an

OAuth2 based SCA was performed in a preceding

AIS service in the same session.

Client-SCA-

Approach-

Preference

String Optional A comma separated list of attributes, where the first

entry will have a higher priority than the next or to

every SCA Approach which is not indicated at all, e.g.

"decoupled, redirect, embedded"

or

"decoupled".

This attribute may be ignored by the ASPSP.

Client-Redirect-

URI

String Conditional URI of the TPP, where the transaction flow shall be

redirected to after a Redirect. Mandated for the

Redirect SCA Approach, specifically when Client-

Redirect-Preferred equals "true". See Section 5.3for

further requirements on this header.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 85

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

This field may be ignored by the ASPSP for migration

reasons.

For this reason, the same Client-Redirect-URI as

used when creating the related resource shall be

provided by the TPP. This specifically applies to the

authorisation of a payment cancellation, where the

same Client-Redirect-URI as for the corresponding

payment initiation shall be used. This applies also to

multilevel SCA, where the Client-Redirect-URI for all

authorisation processes for one transaction shall be

equal.

It is recommended to always use this header field.

Remark for Future: The condition on keeping the

Client-Redirect-URI equal during a transaction

lifecycle might be removed in the next version of the

specification.

Client-Nok-

Redirect-URI

String Optional If this URI is contained, the TPP is asking to redirect

the transaction flow to this address instead of the

Client-Redirect-URI in case of a negative result of the

redirect SCA method. This may be ignored by the

ASPSP. See Section 5.3 for further requirements on

this header.

The same condition as for Client-Redirect-URI on

keeping the URI equal during a transaction lifecycle

applies also to this header.

Request Body

No request body.

Note: If the hyperlinks in the following extended forms are used in the Transaction Initiation

Response message or Transaction Cancellation Response message before, additional

conditions on request body parameters apply as indicated in the following:

• "startAuthorisationWithPsuIdentification": Cp. Section 9.4.2

• "startAuthorisationWithPsuAuthentication": Cp. Section 9.4.3

• "startAuthorisationWithEncryptedPsuAuthentication": Cp. Section 9.4.3.

• "startAuthorsiationWithAuthenticationMethodSelection": Cp. Section 9.4.4.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 86

 (ref. License Notice for full license conditions)

The differences in the calls then are only whether to use a POST command to create the

authorisation sub-resource and update the specified data at the same time or to use a PUT

command to update the specified data to an already created authorisation sub-resource.

Response Code

HTTP response code equals 201.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

ASPSP-SCA-

Approach

String Conditional Possible values are:

• EMBEDDED

• DECOUPLED

• REDIRECT

• ASPSP-CHANNEL

OAuth will be subsumed by the value

REDIRECT

Response Body

Attribute Type Condition Description

transactionFees Amount Optional Might be used by the ASPSP to transport

the total transaction fee relevant for the

underlying payments in case of a payment

resource. This field includes the entry of the

currencyConversionFees if applicable.

currencyConversion

Fees

Amount Optional Might be used by the ASPSP to transport

specific currency conversion fees related to

the initiated credit transfer in case of a

payment resource id.

estimatedTotalAmount Amount Optional The amount which is estimated to be

debted from the debtor account in case of a

payment resource.

Note: This amount includes fees.

estimatedInterbank

SettlementAmount

Amount Optional The estimated amount to be transferred to

the payee in case of a payment resource.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 87

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

scaStatus SCA Status Mandatory

authorisationId String Mandatory Unique resource identification of the

created authorisation or cancellation

authorisation sub-resource.

scaMethods Array of

Authentication

Objects

Conditional This data element might be contained, if

SCA is required and if the PSU has a choice

between different authentication methods.

Depending on the risk management of the

ASPSP this choice might be offered before

or after the PSU has been identified with the

first relevant factor, or if an access token is

transported. If this data element is

contained, then there is also a hyperlink of

type "selectAuthenticationMethod”

contained in the response body.

These methods shall be presented towards

the PSU for selection by the API Client.

chosenSca

Method

Authentication

Object

Conditional This data element is only contained in the

response if the ASPSP has chosen the

Embedded SCA Approach, if the PSU is

already identified e.g. with the first relevant

factor or alternatively an access token, if

SCA is required and if the authentication

method is implicitly selected.

challengeData Challenge Conditional It is contained in addition to the data

element "chosenScaMethod" if challenge

data is needed for SCA.

 In rare cases this attribute is also used in

the context of the

"updatePsuAuthentication" or

"updateEncryptedPsuAuthentication" link.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 88

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

_links Links Mandatory A list of hyperlinks to be recognised by the

API Client. The actual hyperlinks used in

the response depend on the dynamical

decisions of the ASPSP when processing

the request.

Remark: All links can be relative or full links,

to be decided by the ASPSP.

Type of links admitted in this response,

(further links might be added for ASPSP

defined extensions):

"scaRedirect": In case of an SCA Redirect

Approach, the ASPSP is transmitting the

link to which to redirect the PSU browser.

 "scaOAuth": In case of a SCA OAuth2

Approach, the ASPSP is transmitting the

URI where the configuration of the

Authorisation Server can be retrieved. The

configuration follows the OAuth 2.0

Authorisation Server Metadata

specification.

"confirmation": Might be added by the

ASPSP if either the "scaRedirect" or

"scaOAuth" hyperlink is returned in the

same response message. This hyperlink

defines the URL to the resource which

needs to be updated with

• a confirmation code as retrieved

after the plain redirect

authentication process with the

ASPSP authentication server or

• an access token as retrieved by

submitting an authorization code

after the integrated OAuth based

authentication process with the

ASPSP authentication server.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 89

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

 "updatePsuIdentification":

The link to the authorisation or cancellation

authorisation sub-resource, where PSU

identification data needs to be uploaded.

"udpatePsuAuthentication":

The link to the authorisation or cancellation

authorisation sub-resource, where PSU

authentication data needs to be uploaded.

"udpateEncryptedPsuAuthentication":

The link to the authorisation or cancellation

authorisation sub-resource, where

encrypted PSU authentication data needs

to be uploaded

 "selectAuthenticationMethod":

The link to the authorisation or cancellation

authorisation sub-resource, where the

selected authentication method needs to be

uploaded. This link is contained under

exactly the same conditions as the data

element "scaMethods"

 "authoriseTransaction":

The link to the authorisation or cancellation

authorisation sub-resource, where the

authorisation data has to be uploaded, e.g.

the TOP received by SMS.

 "scaStatus": The link to retrieve the

scaStatus of the corresponding

authorisation sub-resource.

"transactionFees": The link is to the status

resource. This link is only added in case fee

information is available via the status

resource.

psuMessage Max500Text Optional

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 90

 (ref. License Notice for full license conditions)

Note: If the hyperlinks in the following extended forms are used in the Transaction Initiation

Response or Transaction Cancellation Response message before, additional response

parameters apply as indicated in the following:

• In case of "startAuthorisationWithPsuIdentification": Cp. Section 9.4.2

• In case of: "startAuthorisationWithPsuAuthentication": Cp. Section 9.4.3

• In case of: "startAuthorisationWithEncryptedPsuAuthentication": Cp. Section 9.4.3

• In case of: "startAuthorisationWithAuthenticationMethodSelection": Cp.

Section 9.4.4.

Example

Request

POST https://api.testbank.com/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

PSU-ID: PSU-1234

Response

HTTP/1.x 201 CREATED

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

ASPSP-SCA-Approach: DECOUPLED

Date: Sun, 06 Aug 2017 15:05:47 GMT

Location: https://www.testbank.com/psd2/v2/payments/sepa-

credit-transfers/3d9a81b3-a47d-4130-8765-

a9c0ff861100/authorisations/3d9a81b3-a47d-4130-9999-a9c0ff861100

Content-Type: application/json

{

 "scaStatus": "received",

 "authorisationId": "3d9a81b3-a47d-4130-9999-a9c0ff861100",

 "psuMessage": "Please use your BankApp for transaction authorisation.",

 "_links": {

 "scaStatus": {"href": "/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/

authorisations/3d9a81b3-a47d-4130-9999-a9c0ff861100"}

 }

}

9.4.1 Update PSU Data

Independent of the SCA approach, the ASPSP might offer to select the SCA method before

the SCA approach is defined, because e.g. the SCA Approach to be chosen might depend on

the SCA method.

https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890
https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 91

 (ref. License Notice for full license conditions)

• A specific Update PSU Data Request is applicable for

▪ the selection of authentication methods (see section 9.4.4), before

choosing the actual SCA approach.

Depending on the SCA approach, different further PSU Data needs to be updated:

• Decoupled SCA Approach: A specific Update PSU Data Request is only applicable

for

▪ adding the PSU Identification (see section 9.4.2) or a PSU Authentication

(see section 9.4.3, if not provided yet in the related Transaction Initiation

Request and if no OAuth2 access token is used, or

▪ the selection of authentication methods (see section 9.4.4).

• Embedded SCA Approach: The Update PSU Data Request might be used

▪ to add credentials as a first factor authentication data of the PSU (see

section 9.4.3) and

▪ to select the authentication method (see section 9.4.4).

These different Update PSU Data Requests are differentiated in the following sub sections.

9.4.2 Update PSU Data (Identification)

This call is used, when in the preceding call the hyperlink of type "updatePsuIdentification"

was contained, e.g. in case of a Decoupled Approach in the response and is now followed by

the TPP.

Call

PUT /v2/{resource-path}/{resourceId}/{authorisation-

category}/{auhtorisationId}

Updates the addressed authorisation sub-resource data on the server by PSU data, if

requested by the ASPSP.

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/product-type}, where

• {service} stands for the service type of the related

business transaction, e.g. /payments or /consents

• {product-type} stands for the product-type of the related

business transaction where applicable, e.g. sepa-

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 92

 (ref. License Notice for full license conditions)

Attribute Type Description

credit-transfers in the case of payments or account-

access in case of consents.

resourceId String Resource identification of the related payment initiation, signing

basket, consent, subscription or other related business

transaction resource.

authorisation-

category

String The following two categories are supported:

• authorisations: used in case of an authorisation of

the related business transaction.

• cancellation-authorisations: used in case of

the cancellation authorisation of the related business

transaction. Used only if applicable to the addressed

{service}

authorisationId String Resource identification of the related authorisation sub-

resource.

Query Parameters

No specific query parameters.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

PSU-ID String Conditional Contained if not yet contained in a preceding

request, and mandated by the ASPSP in the related

response

PSU-ID-Type String Conditional Type of the PSU-ID, needed in scenarios where

PSUs have several PSU-IDs as access possibility.

PSU-Corporate-

ID

String Conditional Contained if not yet contained in a preceding

request, and mandated by the ASPSP in the related

response. This field is relevant only in a corporate

context.

PSU-Corporate-

ID-Type

String Conditional Might be mandated by the ASPSP in addition if the

PSU-Corporate-ID is contained.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 93

 (ref. License Notice for full license conditions)

Request Body

No request body.

Response Code

HTTP response code is 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

ASPSP-SCA-

Approach

String Conditional Possible values are:

• EMBEDDED

• DECOUPLED

• REDIRECT

• ASPSP-CHANNEL

OAuth will be subsumed by the value

REDIRECT

Response Body

Attribute Type Condition Description

transactionFees Amount Optional Might be used by the ASPSP to transport

the total transaction fee relevant for the

underlying payments. This field includes

the entry of the currencyConversionFees

if applicable.

currencyConversion

Fees

Amount Optional Might be used by the ASPSP to transport

specific currency conversion fees related

to the initiated credit transfer.

estimatedTotalAmount Amount Optional The amount which is estimated to be

debted from the debtor account.

Note: This amount includes fees.

estimatedInterbank

SettlementAmount

Amount Optional The estimated amount to be transferred

to the payee.

scaMethods Array of

Authentication

Objects

Conditional Might be contained, if several

authentication methods are available.

(name, type)

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 94

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

_links Links Mandatory A list of hyperlinks to be recognised by the

TPP. The actual hyperlinks used in the

response depend on the dynamical

decisions of the ASPSP when processing

the request.

Remark: All links can be relative or full

links, to be decided by the ASPSP.

Type of links admitted in this response,

(further links might be added for ASPSP

defined extensions):

"scaStatus": The link to retrieve the

scaStatus of the corresponding

authorisation sub-resource.

"transactionFees": The link is to the status

resource. This link is only added in case

fee information is available via the status

resource.

 "selectAuthenticationMethod": This is a

link to a resource, where the TPP can

select the applicable second factor

authentication methods for the PSU, if

there are several available authentication

methods and if the PSU is already

sufficiently authenticated.. If this link is

contained, then there is also the data

element "scaMethods" contained in the

response body

scaStatus SCA Status Mandatory

psuMessage Max500Text Optional

Example

Request

PUT https://api.testbank.com/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

PSU-ID: PSU-1234

https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890
https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 95

 (ref. License Notice for full license conditions)

Response

HTTP/1.x 200 OK

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

ASPSP-SCA-Approach: DECOUPLED

Date: Sun, 06 Aug 2017 15:05:47 GMT

Content-Type: application/json

{

 "scaStatus": "psuIdentified",

 "psuMessage": "Please use your BankApp for transaction Authorisation.",

 "_links": {

 "scaStatus": {"href": "/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/

authorisations/3d9a81b3-a47d-4130-9999-a9c0ff861100"}

 }

}

9.4.3 Update PSU Data (Authentication) in the Decoupled or Embedded Approach

This call is used, when in the preceding call the hyperlink of type "updatePsuAuthentication",

"updateEncryptedPsuAuthentication", or was contained in the response and is followed by the

API Client.

Call

PUT /v2/{resource-path}/{resourceId}/{authorisation-

category}/{auhtorisationId}

Updates the addressed authorisation sub-resource data on the server by PSU data, if

requested by the ASPSP.

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/product-type}, where

• {service} stands for the service type of the related

business transaction, e.g. /payments or /consents

• {product-type} stands for the product-type of the related

business transaction where applicable, e.g. sepa-

credit-transfers in the case of payments or account-

access in case of consents.

resourceId String Resource identification of the related payment initiation, signing

basket, consent, subscription or other related business

transaction resource.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 96

 (ref. License Notice for full license conditions)

Attribute Type Description

authorisation-

category

String The following two categories are supported:

• authorisations: used in case of an authorisation of

the related business transaction.

• cancellation-authorisations: used in case of

the cancellation authorisation of the related business

transaction. Used only if applicable to the addressed

{service}

authorisationId String Resource identification of the related authorisation sub-

resource.

Note: The openFinance API Framework allows ASPSPs to mandate a payload encryption to

protect the password contained in the payload.

Query Parameters

No specific query parameters.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

PSU-ID String Conditional Contained if not yet contained in a preceding

request, and mandated by the ASPSP in the related

response

PSU-ID-Type String Conditional Contained if not yet contained in a preceding

request, and mandated by the ASPSP in the related

response

PSU-Corporate-

ID

String Conditional Contained if not yet contained in a preceding

request, and mandated by the ASPSP in the related

response. This field is relevant only in a corporate

context.

PSU-Corporate-

ID-Type

String Conditional Contained if not yet contained in a preceding

request, and mandated by the ASPSP

documentation. Might be mandated by the ASPSP

in addition if the PSU-Corporate-ID is contained.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 97

 (ref. License Notice for full license conditions)

Request Body

Attribute Type Condition Description

psuData PSU

Credentials

Mandatory The password, or encryptedPassword,

subfield is used, depending on encryption

requirements of the ASPSP as indicated in

the corresponding hyperlink contained in the

preceding response message of the ASPSP.

The related encryption requirements are

defined in Section 7.2.

Response Code

HTTP response code equals 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

ASPSP-SCA-

Approach

String Conditional Possible values are:

• EMBEDDED

• DECOUPLED

• REDIRECT

• ASPSP-CHANNEL

OAuth will be subsumed by the value

REDIRECT

Response Body

Attribute Type Condition Description

chosenSca

Method

Authenticatio

n Object

Conditional A definition of the provided SCA method is

contained, if only one authentication

method is available, and if the Embedded

SCA approach is chosen by the ASPSP.

challengeData Challenge Conditional Challenge data might be contained, if only

one authentication method is available, and

if the Embedded SCA approach is chosen

by the ASPSP.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 98

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

scaMethods Array of

Authenticatio

n Objects

Conditional Might be contained, if several authentication

methods are available. (name, type)

accounts Array of

Account

Details

Conditional Provided, if the PSU account reference has

not been provided in the related resource

data submission and if more than one

account is available.

_links Links Conditional A list of hyperlinks to be recognised by the

TPP. Might be contained, if several

authentication methods are available for the

PSU.

Type of links admitted in this response:

"updateAdditionalPsuAuthentication"

 The link to the payment initiation or

account information resource, which needs

to be updated by an additional PSU

password. This link is only contained in rare

cases, where such additional passwords

are needed for PSU authentications.

"updateAdditionalEncryptedPsuAuthenticat

ion"

The link to the payment initiation or account

information resource, which needs to be

updated by an additional encrypted PSU

password. This link is only contained in rare

cases, where such additional passwords

are needed for PSU authentications.

 "updateResourceByDebtorAccountResourc

e"

The link to the business resource which

needs an update by any potential debtor

account delivered in the "accounts" attribute

above.

 "selectAuthenticationMethod": This is a link

to a resource, where the TPP can select the

applicable second factor authentication

methods for the PSU, if there were several

available authentication methods. This link

is only contained, if the PSU is already

identified or authenticated with the first

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 99

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

relevant factor or alternatively an access

token, if SCA is required and if the PSU has

a choice between different authentication

methods. If this link is contained, then there

is also the data element "scaMethods"

contained in the response body

 "authoriseTransaction": The link to the

resource, where the "Transaction

Authorisation Request" is sent to. This is the

link to the resource which will authorise the

transaction by checking the SCA

authentication data within the Embedded

SCA approach.

 "scaStatus": The link to retrieve the

scaStatus of the corresponding

authorisation sub-resource.

"transactionFees": The link is to the status

resource. This link is only added in case fee

information is available via the status

resource.

scaStatus SCA Status Mandatory

psuMessage Max500Text Optional

NOTE: In case of an incorrect password, the ASPSP informs the TPP via the message code

PSU_CREDENTIALS_INVALID. The TPP then needs to ask the PSU for re-entering the

password. The newly entered password needs to be updated to the same path. It is

recommended that the ASPSP is informing the TPP about this by adding a _links section in

the additional error information and presenting a corresponding updatePsuAuthentication or

updateEncryptedPsuAuthentication hyperlink. In case an incorrect password is entered too

often, the ASPSP will at least put the related resource to a "Rejected" status. The ASPSP

might inform the PSU via psuMessages about further impact.

NOTE: If an account list is provided for the selection of an account via the access method

defined in Section 9.9, then the status of the related payment resource will be moved from

"RCVD" to "PNDG", to indicate that further data needs to provided on resource level, before

the authorisation can be completed. In addition, the ASPSP should provide a status reason

code, providing more information on the pending reason.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 100

 (ref. License Notice for full license conditions)

Example

Request in case of Embedded Approach

PUT https://api.testbank.com/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

PSU-ID: PSU-1234

{

"psuData": {

 "password": "start12"

 }

}

Response in case of the embedded approach

HTTP/1.x 200 OK

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

ASPSP-SCA-Approach: EMBEDDED

Date: Sun, 06 Aug 2017 15:05:47 GMT

Content-Type: application/json

{

 "scaStatus": "psuAuthenticated",

 "_links": {

 "authoriseTransaction": {"href": "/psd2/v2/payments/sepa-credit-

transfers/3A3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100"}

 }

}

9.4.4 Update PSU Data (Select Authentication Method)

This call is used, when in the preceding call the hyperlink of type "selectAuthenticationMethod"

was contained in the response and was followed by the TPP.

Call

PUT /v2/{resource-path}/{resourceId}/{authorisation-

category}/{auhtorisationId}

Updates the addressed authorisation sub-resource data on the server by PSU data, if

requested by the ASPSP.

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/product-type}, where

https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890
https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 101

 (ref. License Notice for full license conditions)

Attribute Type Description

• {service} stands for the service type of the related

business transaction, e.g. /payments or /consents

• {product-type} stands for the product-type of the related

business transaction where applicable, e.g. sepa-

credit-transfers in the case of payments or account-

access in case of consents.

resourceId String Resource identification of the related payment initiation, signing

basket, consent, subscription or other related business

transaction resource.

authorisation-

category

String The following two categories are supported:

• authorisations: used in case of an authorisation of

the related business transaction.

• cancellation-authorisations: used in case of

the cancellation authorisation of the related business

transaction. Used only if applicable to the addressed

{service}

authorisationId String Resource identification of the related authorisation sub-

resource.

Query Parameters

No specific query parameters.

Response Code

The HTTP response code equals 200.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Request Body

Attribute Type Condition Description

authentication

MethodId

String Mandatory The authentication method ID as provided by

the ASPSP.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 102

 (ref. License Notice for full license conditions)

Response Code

HTTP response code equals 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

ASPSP-SCA-

Approach

String Optional Possible values are:

• EMBEDDED

• DECOUPLED

• REDIRECT

• ASPSP-CHANNEL

OAuth will be subsumed by the constant

REDIRECT

Response Body

Attribute Type Condition Description

chosenSca

Method

Authentication

object

Conditional A definition of the provided SCA method

is contained, if the Embedded SCA

approach is chosen by the ASPSP.

challengeData Challenge Conditional Challenge data might be contained, if the

Embedded SCA approach is chosen by

the ASPSP.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 103

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

_links Links Conditional A list of hyperlinks to be recognised by

the TPP. The actual hyperlinks used in

the response depend on the dynamical

decisions of the ASPSP when processing

the request.

Remark: All links can be relative or full

links, to be decided by the ASPSP.

Remark: This method can be applied

before or after PSU identification. This

leads to many possible hyperlink

responses.

Type of links admitted in this response,

(further links might be added for ASPSP

defined extensions):

"scaRedirect": In case of an SCA

Redirect Approach, the ASPSP is

transmitting the link to which to redirect

the PSU browser.

"scaOAuth": In case of a SCA OAuth2

Approach, the ASPSP is transmitting the

URI where the configuration of the

Authorisation Server can be retrieved.

The configuration follows the OAuth 2.0

Authorisation Server Metadata

specification.

"confirmation": Might be added by the

ASPSP if either the "scaRedirect" or

"scaOAuth" hyperlink is returned in the

same response message. This hyperlink

defines the URL to the resource which

needs to be updated with

• a confirmation code as retrieved

after the plain redirect

authentication process with the

ASPSP authentication server or

• an access token as retrieved by

submitting an authorization code

after the integrated OAuth based

authentication process with the

ASPSP authentication server.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 104

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

 "updatePsuIdentification":

The link to the authorisation or

cancellation authorisation sub-resource,

where PSU identification data needs to

be uploaded.

"updatePsuAuthentication":

The link to the authorisation or

cancellation authorisation sub-resource,

where PSU authentication data needs to

be uploaded.

"updateEncryptedPsuAuthentication":

The link to the authorisation or

cancellation authorisation sub-resource,

where encrypted PSU authentication

data needs to be uploaded.

"authoriseTransaction":

The link to the authorisation or

cancellation authorisation sub-resource,

where the authorisation data has to be

uploaded, e.g. the TOP received by SMS.

"scaStatus": The link to retrieve the

scaStatus of the corresponding

authorisation sub-resource.

"transactionFees": The link is to the

status resource. This link is only added in

case fee information is available via the

status resource.

scaStatus Sca Status Mandatory

psuMessage Max500Text Optional

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 105

 (ref. License Notice for full license conditions)

Example

Request in case of Embedded Approach

PUT https://api.testbank.com/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100

X-Request-ID: asdfoeljkasdfoelkjasdf-123479093

{

authenticationMethodId: "myAuthenticationID"

}

Response in case of the embedded approach

HTTP/1.x 200 OK

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

ASPSP-SCA-Approach: EMBEDDED

Date: Sun, 06 Aug 2017 15:05:47 GMT

Content-Type: application/json

{

 "scaStatus": "scaMethodSelected",

 "chosenScaMethod": {

 "authenticationType": "SMS_OTP",

 "authenticationMethodId": "myAuthenticationID"},

 "challengeData": {

 "otpMaxLength": "6",

 "otpFormat": "integer"},

 "_links": {

 "authoriseTransaction": {"href": "/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100"}

 }

}

9.5 Transaction Authorisation

This call is only used in case of an Embedded SCA Approach.

Call

PUT /v2/{resource-path}/{resourceId}/{authorisation-

category}/{auhtorisationId}

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 106

 (ref. License Notice for full license conditions)

Transmit response data to the challenge for SCA checks by the ASPSP.

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/product-type}, where

• {service} stands for the service type of the related

business transaction, e.g. /payments or /consents

• {product-type} stands for the product-type of the related

business transaction where applicable, e.g. sepa-

credit-transfers in the case of payments or account-

access in case of consents.

resourceId String Resource identification of the related payment initiation, signing

basket, consent, subscription or other related business

transaction resource.

authorisation-

category

String The following two categories are supported:

• authorisations: used in case of an authorisation of

the related business transaction.

• cancellation-authorisations: used in case of

the cancellation authorisation of the related business

transaction. Used only if applicable to the addressed

{service}

authorisationId String Resource identification of the related authorisation sub-

resource.

Query Parameter

No specific query parameters.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Authorization String Conditional Is contained only, if the optional Oauth Pre-Step

was performed.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 107

 (ref. License Notice for full license conditions)

Request Body

Attribute Type Condition Description

scaAuthenticationData String Mandatory SCA authentication data, depending on the

chosen authentication method. If the data is

binary, then it is base64 encoded.

Response Code

HTTP response code equals 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Response Body

Attribute Type Condition Description

scaStatus SCA Status Mandatory

_links Links Conditional . A list of hyperlinks to be recognised by the TPP.

The actual hyperlinks used in the response

depend on the dynamical decisions of the

ASPSP when processing the request.

Remark: All links can be relative or full links, to

be decided by the ASPSP.

"transactionFees": The link is to the status

resource. This link is only added in case fee

information is available via the status resource.

NOTE: In case of incorrect scaAuthenticationData, the ASPSP informs the TPP via the

message code PSU_CREDENTIALS_INVALID. The TPP then needs to ask the PSU for re-

entering the authentication data by repeating the SCA method first. Depending on the

implementation of the corresponding SCA method, the TPP needs

• either to re-start the full authorisation process by generating a new authorisation

sub-resource, e.g. in case of an SMS OTP,

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 108

 (ref. License Notice for full license conditions)

• or to submit newly generated authentication data generated on a customer device

to the same path as the first time, and where no new challenge data from the

ASPSP is needed, e.g. in case of a CHIP OTP.

The ASPSP is informing the TPP about this by adding a _links section in the additional error

information and presenting a corresponding startAuthorisation, or transactionAuthorisation

hyperlink. In case an incorrect OTP is entered too often, the ASPSP will at least put the related

resource to a "Rejected" status. The ASPSP might inform the PSU via psuMessages about

further impact.

Example

Request

PUT https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/

3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-a47d-4130-

9999-a9c0ff861100

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

{

 "scaAuthenticationData": "123456"

}

Response in case of the embedded approach

Response Code 200

Response Body

{

 "scaStatus": "finalised",

 "_links": {

 "scaStatus": {"href": "/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100"}

 }

}

9.6 Get Authorisation Sub-Resources Request

Call

GET /v2/{resource-path]/{resourceId}/{authorisation-category}

Will deliver an array of resource identifications of all generated authorisation or cancellation

authorisation sub-resources.

https://api.testbank.com/psd2/v2/payments/

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 109

 (ref. License Notice for full license conditions)

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/product-type}, where

• {service} stands for the service type of the related

business transaction, e.g. /payments or /consents

• {product-type} stands for the product-type of the related

business transaction where applicable, e.g. sepa-

credit-transfers in the case of payments or account-

access in case of consents.

resourceId String Resource identification of the related payment initiation, signing

basket, consent, subscription or other related business

transaction resource.

authorisation-

category

String The following two categories are supported:

• authorisations: used in case of an authorisation of

the related business transaction.

• cancellation-authorisations: used in case of

the cancellation authorisation of the related business

transaction. Used only if applicable to the addressed

{service}

Query Parameters

No specific query parameters defined.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Authorization String Conditional Is contained only, if an OAuth2 based authentication

was performed in a pre-step or an OAuth2 based

SCA was performed in the current business

transaction or in a preceding AIS service in the same

session, if no such OAuth2 SCA approach was

chosen in the current PIS transaction.

Request Body

No request body.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 110

 (ref. License Notice for full license conditions)

Response Code

The HTTP response code equals 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Response Body

Attribute Type Condition Description

authorisationIds Array of

String

Mandatory An array of all authorisationIds connected to the

related business transaction.

Example

Request

GET https://api.testbank.com/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations

Accept: application/json

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7723

Date: Sun, 06 Aug 2017 15:04:07 GMT

Response

HTTP/1.x 200 Ok

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7723

Date: Sun, 06 Aug 2017 15:04:08 GMT

Content-Type: application/json

{

 "authorisationIds": ["3d9a81b3-a47d-4130-9999-a9c0ff861100"]

}

9.7 GET Authorisation Status Request

Call

GET /v2/{resource-path}/{resourceId}/{authorisation-

category}/{auhtorisationId}

Checks the SCA status of an authorisation or cancellation authorisation sub-resource.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 111

 (ref. License Notice for full license conditions)

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/product-type}, where

• {service} stands for the service type of the related

business transaction, e.g. /payments or /consents

• {product-type} stands for the product-type of the related

business transaction where applicable, e.g. sepa-

credit-transfers in the case of payments or account-

access in case of consents.

resourceId String Resource identification of the related payment initiation, signing

basket, consent, subscription or other related business

transaction resource.

authorisation-

category

String The following two categories are supported:

• authorisations: used in case of an authorisation of

the related business transaction.

• cancellation-authorisations: used in case of

the cancellation authorisation of the related business

transaction. Used only if applicable to the addressed

{service}

authorisationId String Resource identification of the related authorisation sub-

resource.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Authorization String Conditional Is contained only, if an OAuth2 based authentication

was performed in a pre-step or an OAuth2 based

SCA was performed in the current PIS transaction or

in a preceding AIS service in the same session, if no

such OAuth2 SCA approach was chosen in the

current PIS transaction.

Query Parameters

No specific query parameters defined.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 112

 (ref. License Notice for full license conditions)

Request Body

No request body.

Response Code

The HTTP response code equals 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Response Body

Attribute Type Condition Description

scaStatus SCA Status Mandatory This data element is containing information

about the status of the SCA method applied.

psuName Max140Text Optional Name of the PSU3

In case of a corporate account, this might be the

person acting on behalf of the corporate.

_links Links Optional Should refer to next steps if the problem can be

resolved via the interface e.g. for re-submission

of credentials.

apiClientMessages Array of

Client

Message

Information

Optional Messages to the TPP on operational issues.

Example

Request

GET https://api.testbank.com/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100

Accept: application/json

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

3 Usage is following the mandate resulting from EBA Q&A 2020_5165.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 113

 (ref. License Notice for full license conditions)

Date: Sun, 06 Aug 2017 15:04:07 GMT

Response

HTTP/1.x 200 Ok

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:04:08 GMT

Content-Type: application/json

{

 "scaStatus": "finalised"

}

9.8 Confirmation Request Procedure

The Confirmation Request Procedure is technically an optional extension of the authorisation

process in case of the Redirect or OAuth SCA Approach. Its purpose is to prevent Cross-Site-

Request-Forgery attacks (XSRF attacks) following the approach presented in [XS2A-SecB],

chapter 3. Further details motivating the extension are also presented there.

The Confirmation Request is used, when in the preceding response the hyperlink of type

"confirmation" was contained. This may (only) happen, if a redirection or OAuthSCA approach

has been applied.

The processes connected to the Confirmation Request differ in details depending on whether

the authorization has taken place using a Redirect approach that does not involve the OAuth

protocol (described as "Redirect SCA Approach" in the following) or a Redirect Approach

that makes use of the OAuth protocol ("OAuth SCA Approach"). Before the call can be

submitted by the TPP, an authorization code (in case of the OAuth SCA Approach),

respectively a confirmation code (in case of the Redirect SCA Approach) needs to be retrieved

by the TPP after the SCA processing in a redirect to the ASPSP authentication server.

• In case of the OAuth SCA Approach, the overall procedure to receive the related

authorization code and the access token succedingly is described in Section

• In case of the Redirect SCA Approach, the procedure to retrieve the confirmation code

is described in Section 9.8.2. The actual Confirmation Request Message is described

in Section 9.8.4 for both the OAuth2 SCA Approach and the Redirect SCA Approach

after having defined the pre-conditions in both approaches in Section 9.8.3

Due to the complexity of the process, flows are added below for payment initiation as an

example before specifying the related requests in detail.

9.8.1 Confirmation Request Flow Examples for Payment Initiation

9.8.1.1 Redirect SCA Approach: Explicit Start of the Authorisation Process with

Confirmation

If the ASPSP supports the Redirect SCA Approach, the message flow within the payment

initiation service is simple. The Payment Initiation Request is followed by an explicit request

of the TPP to start the authorisation. This is followed by a redirection to the ASPSP SCA

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 114

 (ref. License Notice for full license conditions)

authorisation site. An authorisation confirmation request is requested by the TPP after the

session is re-redirected to the TPP’s system and after the TPP's control on session fixation.

In the end, a payment status request might be needed by the TPP to control the exact status

of the payment initiation.

PSU to ASPSP Interface

PSU PISP ASPSP

PSU initiates a payment via a TPP

The PSU authorises the payment

Query parameters state and confirmationCode

1. Payment-Initiation Request

2b. Payment-Initiation Response (OK)
http Statuscode: 201 (Created)

ASPSP-SCA-Approach: REDIRECT

PSU re-directed to an authorisation webpage of the ASPSP

With query parameter state

Feedback to the customer:

Authorise the transaction (redirect)

query-parameter state

5. Transaction Authorisation Confirmation Request

confirmationCode

2a. Payment-Initiation Response (NOK)

http Codes: 401, 400, 403

validate

• eIDAS certificate

• request syntax

• tpp role

• semanticsEND

6. Transaction Authorisation Confirmation Response
http Statuscode: 200 (OK) – scaStatus

Redirect back to TPP
Query parameters state and confirmationCode

validate

• eIDAS certificate

• request syntax

• Semantics

• Specifically

confirmationCode

3. Start Authorisation Request

4b. Start-Authorisation-Response (OK)
http Statuscode: 201 (Created)

4a. Start-Authorisation Response (NOK)

http Codes: 401, 400, 403

validate

• eIDAS certificate

• request syntax

• semantics
END

validate

• eIDAS certificate

• request syntax

• semantics

7. Payment Status Request

8. Payment-Status Response
http Statuscode: 200 (OK) – ISO20022 Status

control

• Session fixation

by state

parameter

9.8.1.2 OAuth2 SCA Approach: Implicit Start of the Authorisation Process with

Confirmation

If the ASPSP supports the OAuth2 SCA Approach, the flow is very similar to the Redirect SCA

Approach with implicit start of the Authorisation Process. Instead of redirecting the PSU

directly to an authentication server, the OAuth2 protocol is used for the transaction

authorisation process. An authorisation confirmation request is required for the TPP in this

scenario after the session is re-redirected to the TPP’s system and after the TPP's control on

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 115

 (ref. License Notice for full license conditions)

session fixation. In the end, a payment status request might be needed by the TPP to control

the exact status of the payment initiation.

Remark: The OAuth2 SCA Approach with explicit start of the Authorisation Process is treated

analogously.

OAuth Protocol: Integrate PSU to ASPSP Interface

PSU PISP ASPSP

PSU initiates a payment via a TPP

The PSU authorises the payment

Query parameters state and code (a.o.)

1. Payment-Initiation Request

2b. Payment-Initiation Response (OK)
http Statuscode: 201 (Created)

ASPSP-SCA-Approach: REDIRECT

PSU re-directed to an authorisation webpage of the ASPSP (Authorization Request)

With query parameter state (a.o.)

Feedback to the customer:

Authorise the transaction (redirect to Authorization Server)

query-parameter state

3. Transaction Authorisation Confirmation

Access Token

2a. Payment-Initiation Response (NOK)

http Codes: 401, 400, 403
END

4. Payment-Confirmation Response
http Statuscode: 200 (OK) – ISO20022 Status

 Redirect back to TPP
Query parameters state and code

 OAuth configuration

validate

• eIDAS certificate

• request syntax

• tpp role

• semantics

validate

• eIDAS certificate

• Binding certificate access token

• request syntax

• tpp role

• semantics

Token Request

Query parameter code

Token Response

validate

• eIDAS certificate

• semantics

validate

• Client ID

• Redirect URI

• TPP Role

control

• Session fixation

by state

parameter

5. Payment-Status Request

6. Payment-Status Response
http Statuscode: 200 (OK) – ISO20022 Status

It is further recommended for ASPSPs and TPPs in this case to follow the Security Best
Practice definitions as defined in [OA-SecTop]

9.8.2 Retrieving the Confirmation Code in Redirect SCA approach

In the Confirmation Request Flow, the TPP will receive the confirmationCode as a query

parameter in the HTTP request from the PSU agent that redirects the PSU back to the TPP

after successful authorisation.

9.8.2.1 Preparation of the Confirmation Request Flow

Any authorisation process always involves the PSU directly and therefore requires a session

between the PSU and the TPP. To support the Confirmation Request flow that might occur

during the session between PSU and TPP, the TPP needs to fix the session of the PSU agent

(browser or mobile app) on its server with a nonce, where part of it is a unique state parameter.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 116

 (ref. License Notice for full license conditions)

Before redirecting the PSU agent to send the authorization request (see section 9.8.2.2) to

the ASPSP authorisation website, the TPP shall

• create a one-time use token to prevent XSRF attacks to be conveyed to the ASPSP in

the query parameter state and,

• bind this value to the current session in the user (PSU) agent.

The confirmationCode is then retrieved from the response of the HTTP request of the PSU

agent as described in following sub-section.

.

9.8.2.2 Redirecting the PSU agent (Authorisation Request)

To prepare the Confirmation Request flow, the TPP shall add the generated token to prevent

XSRF attacks (see section 9.8.2.1) as an additional query parameter to that URI.

Additional Query Parameter in the PSU Authorisation Request (GET command)

Attribute Type Condition Description

state string mandated state parameter as defined by the TPP as a unique

parameter to counter XSRF attacks and bound to

the PSU/TPP session.

As a consequence of this requirement, it follows that ASPSPs shall not include a query

parameter named "state" in their "scaRedirect" links.

Example

If the TPP received "scaRedirect" link containing the URI

"https://authserver.testbank.com" only, the TPP shall forward the PSU agent to

send a request

GET https://authserver.testbank.com?state=1234567er

If the TPP received "scaRedirect" link containing the URI

"https://authserver.testbank.com?bankProvidedQueryParameter=A" the TPP

shall forward the PSU agent to send a request

GET

https://authserver.testbank.com?bankProvidedQueryParameter=A&state=1

234567er

Response from the ASPSP Redirecting the PSU Agent back to the TPP

If the customer authentication via a Redirect SCA Approach ultimately fails, the customer is

redirected to the URI assigned by the TPP in header field "Client-Nok-Redirect-URI". In this

case, the business transaction / cancellation will anyhow not be authorised based in the

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 117

 (ref. License Notice for full license conditions)

current flow. Therefore no additional steps are required from the TPP. The last part of this

paragraph as well as the whole sections 9.8.3 to 9.8.4 only apply, if SCA has been successful.

After the customer authentication via SCA has taken place on the ASPSP server, the ASPSP

responds to the PSU agent redirecting it to the URI provided by the TPP in the header

"Client-Redirect-URI". To support the Confirmation Request flow, the ASPSP shall add

the received query parameter "state" and a unique confirmationCode bound to the

authorisation resource . The confirmationCode will only be contained if SCA has been

successfully performed. Redirection is done by sending an HTTP response code 302 and a

location header containing the URI to which the PSU is redirected. This would result in a

response from the ASPSP to the PSU agent as described in the follows:

Response Code

The HTTP response code equals 302.

Response Header

Attribute Type Condition Description

Location String Mandatory The ASPSP's Authorization server must

create the content of the Location Header

in the following Form:

[Client-Redirect-

URI]?confirmationCode=[confirmation

code]&state=[state]

Where

[Client-Redirect-URI] is the value of the

"Client-Redirect-URI" header of the

underlying request from the TPP

[confirmationCode] is the ASPSP's

confirmation code as described above

[state] is the value of query parameter

"state" from the PSU authorisation

request

Remark: In case of the OAuth SCA approach, the PSU agent is forwarded similarly to the

redirect_uri as defined in OAuth2 protocol. This redirection will also include a parameter state

and – instead of the "confirmationCode" a parameter "code".

Example in case of Redirect SCA Approach

http 302

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 118

 (ref. License Notice for full license conditions)

Location: www.example-TPP.com/xs2a-

client/v2/ASPSPidentifcation/mytransaction-

id?state=1234567er&confirmationCode=2256ffgh

9.8.3 Confirmation Request Message Pre-Condition

When the PSU is again redirected to the TPP as described above, the TPP will receive the

additional query parameters "state" and "confirmationCode". The TPP must check

whether the state parameter is linked to the current session as described in Section 9.8.2. If

the check is positive then the TPP further processes

• within context of the OAuth SCA Approach with retrieving the access Bearer token as

described in Section 8.8.3 of this document and then proceed as described in

Section 9.8.4.

• within context of the Redirect SCA Approach directly as described in Section 9.8.4.

If the check fails, the transaction must be stopped by the TPP and the above defined request

messages shall not be used.

9.8.4 Authorisation Confirmation Request Message

Call

PUT /v2/{resource-path}/{resourceId}/{authorisation-

category}/{auhtorisationId}

In case of the Redirect SCA approach, this call updates the addressed authorisation or

cancellation authorisation data on the ASPSP server by a confirmation code.

In case of the OAuth2 SCA approach, this call updates the addressed authorisation or

cancellation authorisation data on the ASPSP server with the OAuth2 access token, after

having sent the related attribute "code" to the token server, cp. Section 8.8.3.

Both calls shall only be performed if requested by the ASPSP via the related hyperlink

"confirmation" and if the related checks by the TPP as defined in Section 9.8.3 have been

successful.

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/product-type}, where

• {service} stands for the service type of the related

business transaction, e.g. /payments or /consents

• {product-type} stands for the product-type of the related

business transaction where applicable, e.g. sepa-

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 119

 (ref. License Notice for full license conditions)

Attribute Type Description

credit-transfers in the case of payments or account-

access in case of consents.

resourceId String Resource identification of the related payment initiation, signing

basket, consent, subscription or other related business

transaction resource.

authorisation-

category

String The following two categories are supported:

• authorisations: used in case of an authorisation of

the related business transaction.

• cancellation-authorisations: used in case of

the cancellation authorisation of the related business

transaction. Used only if applicable to the addressed

{service}

authorisationId String Resource identification of the related authorisation sub-

resource.

Query Parameters

No specific query parameters.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Authorization String Conditional Authorization Bearer Token as retrieved by the TPP

in case the OAuth SCA Approach as described in

Section 8.8.4

Request Body

Attribute Type Condition Description

confirmationCode String Conditional Confirmation code as retrieved by the TPP within

the Redirect SCA Approach as described in

Section 9.8.2

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 120

 (ref. License Notice for full license conditions)

Response Code

HTTP response code is 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Response Body

Attribute Type Condition Description

scaStatus SCA Status Mandatory Value "finalised" if the transaction

authorisation/cancellation authorisation and

confirmation was successful.

Value "failed" if the transaction

authorisation/cancellation authorisation or

confirmation was not successful.

_links Links Mandatory A list of hyperlinks to be recognised by the

TPP. The actual hyperlinks used in the

response depend on the dynamical

decisions of the ASPSP when processing

the request.

Remark: All links can be relative or full links,

to be decided by the ASPSP.

Type of links admitted in this response,

(further links might be added for ASPSP

defined extensions):

"status": The link to retrieve the status of the

corresponding transaction resource.

psuMessage Max512Text Optional

Example for OAuth SCA solution

Request

PUT https://api.testbank.com/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100

https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890
https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 121

 (ref. License Notice for full license conditions)

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Authorization: Bearer 1234567

Response

HTTP/1.x 200 OK

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:05:47 GMT

Content-Type: application/json

{

 "scaStatus": "finalised",

 "_links": {

 "status": {"href": "/psd2/v2/payments/sepa-credit-transfers/3d9a81b3-

a47d-4130-8765-a9c0ff861100/status"}

 }

Example for redirect solution

Request

PUT https://api.testbank.com/psd2/v2/payments/sepa-credit-

transfers/3d9a81b3-a47d-4130-8765-a9c0ff861100/authorisations/3d9a81b3-

a47d-4130-9999-a9c0ff861100

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

{"confirmationCode": "2256ffgh"}

Response

HTTP/1.x 200 OK

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:05:47 GMT

Content-Type: application/json

{

 "scaStatus": "finalised",

 "_links": {

 "status": {"href": "/psd2/v2/payments/sepa-credit-transfers/3d9a81b3-

a47d-4130-8765-a9c0ff861100/status"}

 }

}

9.9 Update Resource with Debtor Account

The following method is used to update a payment related resource by an account which is

associated to a PSU, and which needs to be received from the ASPSP first in the response of

the "Update PSU Data with Authentication Request", cp. Section 9.4.3.

Remark: This procedure might be offered by the ASPSP in decoupled or embedded SCA

channels to support "noManualIbanEntry" requirements from regulators for payment initiation.

https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890
https://api.testbank.com/psd2/v2/payments/sepa-credit-transfers/qwer3456tzui7890

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 122

 (ref. License Notice for full license conditions)

Call

PUT /v2/{resource-path}/{resourceId}

Updates the addressed resource by an account related to the PSU.

Path Parameters

Attribute Type Description

resource-path String This resource path can be a one-level parameter {service} or a

two-level parameter {service}/{product-type}, where

• {service} stands for the service type of the related

business transaction, e.g. /payments or /mandates

• {product-type} stands for the product-type of the related

business transaction where applicable, e.g. sepa-

credit-transfers in the case of payments

resourceId String Resource identification of the related payment initiation or

mandate submission.

Query Parameters

No specific query parameters.

Response Code

The HTTP response code equals 200.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Request Body

Attribute Type Condition Description

debtorAccount Account

Resource

Reference

Mandatory The resourceId of the account as provided in

the response defined in Section 9.4.3 shall be

used as the technical account reference.

NOTE: The support of this feature mandates the ASPSP to support UUIDs in the attributes

resourceId of the data type "account details".

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 123

 (ref. License Notice for full license conditions)

Response Code

HTTP response code equals 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

ASPSP-SCA-

Approach

String Optional Possible values are:

• EMBEDDED

• DECOUPLED

• REDIRECT

• ASPSP-CHANNEL

OAuth will be subsumed by the constant

REDIRECT

Response Body

Attribute Type Condition Description

chosenSca

Method

Authentication

Object

Conditional A definition of the provided SCA method is

contained, if only one authentication method is

available, and if the Embedded SCA approach

is chosen by the ASPSP.

challengeData Challenge Conditional Challenge data might be contained, if only one

authentication method is available, and if the

Embedded SCA approach is chosen by the

ASPSP.

scaMethods Array of

Authentication

Objects

Conditional Might be contained, if several authentication

methods are available. (name, type)

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 124

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

_links Links Conditional A list of hyperlinks to be recognised by the TPP.

The actual hyperlinks used in the response

depend on the dynamical decisions of the

ASPSP when processing the request.

Remark: All links can be relative or full links, to

be decided by the ASPSP.

Remark: This method can be applied before or

after PSU identification. This leads to many

possible hyperlink responses.

Type of links admitted in this response, (further

links might be added for ASPSP defined

extensions):

"selectAuthenticationMethod": This is a link to

a resource, where the TPP can select the

applicable second factor authentication

methods for the PSU, if there were several

available authentication methods. This link is

only contained, if the PSU is already identified

or authenticated with the first relevant factor or

alternatively an access token, if SCA is

required and if the PSU has a choice between

different authentication methods. If this link is

contained, then there is also the data element

"scaMethods" contained in the response body

 "authoriseTransaction":

The link to the authorisation or cancellation

authorisation sub-resource, where the

authorisation data has to be uploaded, e.g. the

TOP received by SMS.

"scaStatus": The link to retrieve the scaStatus

of the corresponding authorisation sub-

resource.

"transactionFees": The link is to the status

resource. This link is only added in case fee

information is available via the status resource.

psuMessage Max500Text Optional

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 125

 (ref. License Notice for full license conditions)

10 Signing Baskets

The signing basket is a function of the openFinance API Framework to bundle several

transactions for authorisation. The SCA is then covering all transactions within the signing

basket simultaneously. The ASPSP offering this service can restrict the bundling of

transactions to certain transaction types, e.g. payments only.

10.1 Access Methods for Signing Baskets

Please note that the Establish Signing Basket Request is one instantiation of the Transaction

Initiation Request as introduced in Section 2.2.5, i.e. the notion of authorisation sub resources

and related access methods do also apply here but are specified generically in Section 9.

The following access methods are provided for signing baskets:

Endpoints Method Condition Description

signing-baskets POST Optional Creates a signing basket resource,

where all transactions to be signed

will be addressed within the body.

Section 10.2

signing-baskets/{basketId} GET Mandatory Retrieve the content of a signing

basket resize.

Section 10.3

signing-

baskets/{basketId}/status

GET Mandatory Retrieve the singing basket status

Section 10.4

signing-baskets/{basketId} DELETE Optional Remove an existing signing basket.

The transactions contained in the

basket are not impacted by this call.

Section 10.5

10.2 Establish Signing Basket Request

POST /v2/signing-baskets/

Generates a signing basket

NOTE: Please note that the Establish Signing Basket Request is one instantiation of the

Transaction Initiation Request as introduced in Section 2.2.5, i.e. all related header

parameters regarding PSU context, PSU Identification etc. will apply but will not be described

in detail here. The related Open API files will offer all header parameters in detail.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 126

 (ref. License Notice for full license conditions)

Path Parameters

None.

Query Parameters

No Query Parameter

Request Header

Attribute Type Condition Description

Content-Type String Mandatory application/json

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Authorization String Conditional Bearer Token. Is contained only, if an OAuth2

based authentication was performed in a pre-step

or an OAuth2 based SCA was performed in an

preceding AIS service in the same session.

Consent-ID String Optional This data element may be contained, if the signing

basket transaction is part of a session, i.e.

combined AIS/PIS service. This then contains the

"consentId" of the related AIS one off consent,

which was performed prior to this bulk signing.

PSU-IP-

Address

String Mandatory The forwarded IP Address header field consists of

the corresponding HTTP request IP Address field

between PSU and TPP.

If not available, the TPP shall use the IP Address

used by the TPP when submitting this request.

Request Body

Attribute Type Condition Description

paymentIds Array of

Max70Text

Optional A non empty array of paymentIds.

consentIds Array of

Max70Text

Optional A non empty array of consentIds.

subscriptionIds Array of

Max70Text

Optional A non empty array of subcriptionIds.

subscriptionEntryIds Array of

Max70Text

Optional A non empty array of subscriptionEntryIds.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 127

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

mandateResourceIds Array of

Max70Text

Opitonal A non-empty array of mandateResourceIds

The body shall contain at least one entry.

Response Code

The HTTP response code equals 201.

Response Header

Attribute Type Condition Description

Location String Mandatory Location of the created resource (if created)

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Response Body

Attribute Type Condition Description

transactionStatus Transaction

Status

Mandatory The non payment related values might be used

like RCVD or ACTC. For a list of all

transactionStatus codes permitted for signing

baskets, cp. Section 10.4.

basketId Max70Text Mandatory resource identification of the generated signing

basket resource.

scaMethods Array of

Authentication

Objects

Conditional This data element might be contained, if SCA

is required and if the PSU has a choice

between different authentication methods.

Depending on the risk management of the

ASPSP this choice might be offered before or

after the PSU has been identified with the first

relevant factor, or if an access token is

transported. If this data element is contained,

then there is also a hyperlink of type

"startAuthorisationWith

AuthenticationMethodSelection" contained in

the response body.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 128

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

These methods shall be presented towards the

PSU for selection by the TPP.

chosenSca

Method

Authentication

Object

Conditional This data element is only contained in the

response if the ASPSP has chosen the

Embedded SCA Approach, if the PSU is

already identified e.g. with the first relevant

factor or alternatively an access token, if SCA

is required and if the authentication method is

implicitly selected.

challengeData Challenge Conditional It is contained in addition to the data element

"chosenScaMethod" if challenge data is

needed for SCA.

 In rare cases this attribute is also used in the

context of the "startAuthorisationWith

PsuAuthentication" link.

_links Links Mandatory A list of hyperlinks to be recognised by the API

Client. The actual hyperlinks used in the

response depend on the dynamical decisions

of the ASPSP when processing the request.

The potential links for this response message

are generically defined in Section 3.7 for all

Transaction Initiation Response messages

which applies also to the Establish Signing

Basket Response. These links will also be

contained in the related Open API files.

Remark: All links can be relative or full links, to

be decided by the ASPSP.

psuMessage Max500Text Optional Text to be displayed to the PSU

apiClientMessages Array of Client

Message

Information

Optional Messages to the API Client on operational

issues.

Example

Request

POST https://api.testbank.com/psd2/v2/signing-baskets

Content-Type: application/json

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

PSU-IP-Address: 192.168.8.78

https://api.testbank.com/psd2/v1/signing-baskets

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 129

 (ref. License Notice for full license conditions)

PSU-GEO-Location: GEO:52.506931;13.144558

PSU-User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:54.0)

Gecko/20100101 Firefox/54.0

Date: Sun, 06 Aug 2017 15:02:37 GMT

{

 "paymentIds": ["3d9a81b3-a47d-4130-8765-a9c0ff861100", "3d9a81b3-a47d-

4130-8765-a9c0ff861110"]

}

Response (always with explicit authorisation start)

HTTP/1.x 201 Created

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

ASPSP-SCA-Approach: REDIRECT

Date: Sun, 06 Aug 2017 15:02:42 GMT

Location: https://www.testbank.com/psd2/v2/signing-

baskets/3d9a81b3-a47d-4130-8766-a9c0ff861100

Content-Type: application/json

{

 "transactionStatus": "RCVD",

 "basketId": "3d9a81b3-a47d-4130-8766-a9c0ff861100",

 "_links": {

 "self": {"href": "/psd2/v2/signing-baskets/3d9a81b3-a47d-4130-8766-

a9c0ff861100"},

 "status": {"href": "/psd2/v2/signing-baskets/3d9a81b3-a47d-4130-

8766-a9c0ff861100/status"},

 "startAuthorisation": {"href": "/psd2/v2/signing-baskets/3d9a81b3-

a47d-4130-8766-a9c0ff861100/authorisations"}

 }

}

10.3 Get Signing Basket Request

Call

GET /v2/signing-baskets/{basketId}

Returns the content of a signing basket object.

Path Parameters

Attribute Type Description

basketId String ID of the corresponding signing basket object.

Query Parameters

No specific query parameter.

https://www.testbank.com/psd2/v2/signing-baskets/3d9a81b3-a47d-4130-8766-a9c0ff861100
https://www.testbank.com/psd2/v2/signing-baskets/3d9a81b3-a47d-4130-8766-a9c0ff861100

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 130

 (ref. License Notice for full license conditions)

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Authorization String Conditional Is contained only, if an Oauth2 based authentication

was performed in a pre-step or an Oauth2 based

SCA was performed in the current PIS transaction or

in a preceding AIS service in the same session, if no

such Oauth2 SCA approach was chosen in the

current signing basket transaction.

Request Body

No request body.

Response Code

The HTTP response code equals 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Response Body

Attribute Type Condition Description

paymentIds Array of

Max70Text

Optional A non-empty array of paymentIds.

consentIds Array of

Max70Text

Optional A non-empty array of consentIds.

subscriptionIds Array of

Max70Text

Optional A non-empty array of subcriptionIds.

subscriptionEntryIds Array of

Max70Text

Optional A non-empty array of

subscriptionEntryIds.

mandateResourceIds Array of

Max70Text

Optional A non-empty array of

mandateResourceIds.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 131

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

transactionStatus Transaction

Status

Mandatory Only the not explicitly payment related

codes like RCVD, PATC, ACTC, RJCT

are used. For a list of all

transactionStatus codes permitted for

signing baskets, cp. Section 10.4.

_links Links Optional The ASPSP might integrate hyperlinks to

indicate next (authorisation) steps to be

taken.

Example

Request

GET https://api.testbank.com/psd2/v2/signing-baskets/3d9a81b3-a47d-4130-

8766-a9c0ff861100

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:05:46 GMT

Response

HTTP/1.x 200 Ok

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:05:47 GMT

Content-Type: application/json

{

"paymentIds": ["3d9a81b3-a47d-4130-8765-a9c0ff861100", "3d9a81b3-a47d-4130-

8765-a9c0ff861110"],

"transactionStatus": "ACTC"

}

10.4 Get Signing Basket Status Request

Call

GET /v2/signing-baskets/{basketId}/status

Returns the status of a signing basket object.

Path Parameters

Attribute Type Description

basketId String ID of the corresponding signing basket object.

https://api.testbank.com/psd2/v1/signing-baskets/1234-basket-567
https://api.testbank.com/psd2/v1/signing-baskets/1234-basket-567

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 132

 (ref. License Notice for full license conditions)

Query Parameters

No specific query parameter.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Authorization String Conditional Is contained only, if an OAuth2 based authentication

was performed in a pre-step or an OAuth2 based

SCA was performed in the current PIS transaction or

in a preceding AIS service in the same session, if no

such OAuth2 SCA approach was chosen in the

current signing basket transaction.

Request Body

No request body.

Response Code

The HTTP response code equals 200.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Response Body

Attribute Type Condition Description

transactionStatus Transaction

Status

Mandatory Only the codes RCVD, PATC, ACTC,

CANC and RJCT are supported for

signing baskets.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 133

 (ref. License Notice for full license conditions)

Example

Request

GET https://api.testbank.com/psd2/v2/signing-baskets/3d9a81b3-a47d-4130-

8766-a9c0ff861100/status

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:05:49 GMT

Response

HTTP/1.x 200 Ok

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:05:51 GMT

Content-Type: application/json

{

"transactionStatus": "ACTC"

}

10.5 Cancellation of Signing Baskets

A cancellation of a Signing Basket is only permitted where no (partial) authorisation has been

applied for the Signing Basket.

Call

DELETE /v2/signing-baskets/{basketId}

Deletes a created signing basket if it is not yet (partially) authorised.

Path Parameters

Attribute Type Description

basketId String Contains the resource-ID of the signing basket to be deleted.

Query Parameters

No specific query parameters.

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as determined

by the initiating party.

Authorization String Conditional Is contained only, if an OAuth2 based SCA has

been used in a pre-step.

https://api.testbank.com/psd2/v1/signing-baskets/1234-basket-567
https://api.testbank.com/psd2/v1/signing-baskets/1234-basket-567

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 134

 (ref. License Notice for full license conditions)

Request Body

No Request Body.

Response Code

The HTTP response code is 204 in case of successful deletion.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Response Body

No Response Body

Example

Request

DELETE https://api.testbank.com/psd2/v2/signing-baskets/3d9a81b3-a47d-4130-

8766-a9c0ff861100

X-Request-ID 99391c7e-ad88-49ec-a2ad-99ddcb1f7757

Date Sun, 13 Aug 2017 17:05:37 GMT

Response

HTTP/1.x 204 No Content

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7757

Date: Sun, 13 Aug 2017 17:05:38 GMT

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 135

 (ref. License Notice for full license conditions)

11 Resource Status Notification

The openFinance API Framework is supporting a resource status notification function, formally

specified in an alone standing document as Resource Status Notification Service before. This

is now covered within this section as a basic building block for the openFinance API

Framework V2.

This resource status notification function allows ASPSP to push status changes of a resource

created by the API Client within the openFinance API Framework. The API Client needs to

register for receiving such notification messages for every resource where such a function is

envisaged. This registration is steered by the API Client by adding certain headers within the

related Transaction Initiation Request message, which creates the addressed resource.

The related header parameters as defined in Section 11.4 will not be repeated on service

implementation guideline level, but will still be contained in OpenAPI files as an instantiation

to service specifications.

The resource status notification function is an optional feature within the openFinance API

Framework, i.e. a related registration by the API Client might be ignored by the ASPSP.

Requirements on TLS support for the actual push function (turning the ASPSP into a technical

http client towards the API Client) are defined in Section 5.2.

11.1 API Access Methods

The following table gives an overview on the HTTP access methods supported by the

notification API endpoints of the API Client for receiving notification messages on resource

status changes by the ASPSP.

Endpoint Method Condition Description

<Client-Notification-URI> POST Conditional Notification initiated by ASPSP,

endpoint provided by the API Client.

This command posts notification

content to the provided endpoint.

This access method shall be

supported by the API Client if a

Client-Notification-URI is provided by

the API Client in a previous call to the

XS2A Interface or openFinance API

of the ASPSP.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 136

 (ref. License Notice for full license conditions)

11.2 HTTP Response Codes for Notifications

The HTTP response code is communicating the success or failure of an API Client request

message. The 4XX HTTP response codes should only be given if the current request cannot

be fulfilled, e.g. the syntax of the body content is not correct.

This specification supports the following HTTP response codes for the Client Notification API:

Status Code Description

200 OK POST for a notification

400 Bad Request Validation error occurred. This code will cover malformed syntax in

request or incorrect data in payload.

401 Unauthorized The API Client or the PSU is not correctly authorized to perform the

request. Retry the request with correct authentication information.

403 Forbidden Returned if the resource that was referenced in the path exists but

cannot be accessed by the ASPSP. This code should only be used for

non-sensitive id references as it will reveal that the resource exists even

though it cannot be accessed.

404 Not found Returned if the endpoint that was referenced in the path does not exist

or cannot be referenced by the ASPSP.

When in doubt if a specific id in the path is sensitive or not, use the HTTP

response code 404 instead of the HTTP response code 403.

405 Method Not Allowed This code is only sent when the HTTP method (PUT, POST, DELETE,

GET etc.) is not supported on a specific endpoint.

408 Request Timeout The server is still working correctly, but an individual request has timed

out.

415 Unsupported Media

Type

The ASPSP has supplied a media type which the API Client does not

support.

500 Internal Server Error Internal server error occurred.

503 Service Unavailable The API Client server is currently unavailable. Generally, this is a

temporary state.

11.3 Implicit Subscription for Resource Status Notification

This section describes how an API Client is registering for the resource status notification

function within the Transaction Initiation Request message, e.g. a Payment Initiation Message

or an Establish Consent Request message.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 137

 (ref. License Notice for full license conditions)

NOTE: The notification services will also be available for cancellation processes which require

SCA based authentication of PSUs. These services will then be supported by the ASPSP if

requested before by the API Client for the related resource initiation process. So, the

"notification service" support function is stored within the created resource.

11.4 Communicate Notification URI of API Clients to the ASPSP

Call

Any POST command

• creating a resource to be authorised within the openFinance API

Framework.

Creates a corresponding resource in the ASPSP server.

Path Parameters

No specific requirements for the subscription of the resource status notification function.

Query Parameters

No specific requirements for the subscription of the resource status notification function.

Request Header

The following table contains only the request headers which have to be supported by the TPP

or the API Client more generally in addition to headers defined for the corresponding resource

creation request.

Attribute Type Condition Description

Client-

Notification-

URI

String Optional URI for the Endpoint of the Client API to which the

status of the resource should be sent.

This header field may by ignored by the ASPSP if

the resource status push function is not supported

for the related API client.

Client-

Notification-

Content-

Preferred

String Optional The string has the form

status=X1, …, Xn

where Xi is one of the constants SCA, PROCESS,

LAST and where constants are not repeated.

The usage of the constants supports the following

semantics:

SCA: A notification on every change of the

scaStatus attribute for all related authorisation

processes is preferred by the API Client.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 138

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

PROCESS: A notification on all changes of

resource status attributes is preferred by the API

Client.

LAST: Only a notification on the last resource

status as available in the XS2A interface or

openFinance API is preferred by the API Client.

This header field may be ignored, if the ASPSP

does not support the resource notification push

function for the related API Client.

Request Body

No specific requirements.

Response Code

No specific requirements

Response Header

The following table contains only the response headers which have to be supported by the

ASPSP in addition to headers defined for the corresponding resource creation response if the

resource status push function is supported.

Attribute Type Condition Description

ASPSP-

Notification-

Support

Boolean Conditional true if the ASPSP supports the resource status

push function for the created resource.

false if the ASPSP supports resource status push

function in general, but not for the current request.

One of the reasons of no support is that the API

Client had not explicitly asked for the function in

the request.

Not used, if the resource status notification

function is generally not supported by the ASPSP.

Shall be supported if the ASPSP generally

supports the resource status notification function.

ASPSP-

Notification-

Content

String Conditional The string has the form

status=X1, …, Xn

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 139

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

where Xi is one of the constants SCA, PROCESS,

LAST and where constants are not repeated.

The usage of the constants supports the following

semantics:

SCA: Notification on every change of the

scaStatus attribute for all related authorisation

processes is provided by the ASPSP for the

related resource.

PROCESS: Notification on all changes of the

resource status attributes is provided by the

ASPSP for the related resource.

LAST: Notification on the last resource status after

authorisation or cancellation as available in the

related serviceI is provided by the ASPSP for the

related resource.

This field shall be provided if the ASPSP-

Notification-Support =true. The ASPSP might

consider the notification content as preferred by

the TPP, but can also respond independently of

the preferred request.

Response Body

No specific requirements.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 140

 (ref. License Notice for full license conditions)

11.5 Resource Status Notification Message Flow

The following flow shows the simple request and response flow for a resource status

notification function:

ASPSPAPI ClientPSU

Resource
Status Change

1. POST Resource Status
Notification Request

2. Resource Status
Notification ResponseInformation of PSU

e.g. in case of final
status

Remark: In case, where the ASPSP is only pushing a status hyperlink to the API Client, the

API Client needs to check the resource status after step 2.) before informing e.g. the PSU.

11.6 Push Resource Status with JSON encoding

Call

POST <Client-Notification-URL>

Creates a Resource Notification on the API Client server.

Path Parameters

No Path Parameter

Query Parameters

No Query Parameter

Request Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the request, unique to the call, as

determined by the initiating party.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 141

 (ref. License Notice for full license conditions)

Request Body

Attribute Type Condition Description

paymentId Max70Text {Or This shall be contained, if the push

notification is about a payment or

RTP initiation.

consentId Max70Text Or This shall be contained if the push

notification is about establishing a

consent.

subscriptionId Max70Text Or This shall be contained if the push

notification is about establishing a

subscription.

basketId Max70Text Or This shall be contained if the push

notification is about signing a

basket.

mandateResourceId Max70Text Or} This shall be contained if the push

notification is about establishing a

mandate.

entryId Max70Text {Or –

Optional

This may be used if the status

relates to an entry of an RTP bulk.

subscriptionEntryId Max70Text Or –

Optional}

This may be used if the status

relates to an entry of a subscription.

authorisationId Max70Text {Or -

Optional

This attribute should be contained if

the push notification is about a

specific SCA status.

cancellationId Max70Text Or -

Optional}

This attribute should be contained if

the push notification is about a

specific SCA status of a

cancellation authorisation sub-

resource.

transactionStatus Transaction

Status

{Or

Optional

This attribute might be contained if

the related resource contains a

transaction status which has

changed.

consentStatus Consent Status Or

Optional

This attribute might be contained if

the consent status of the addressed

resource has changed.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 142

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

subscriptionStatus Subscripton

Status

Or

Optional

This attribute might be contained if

the subscription status of the

addressed resource has changed.

subscriptionEntryStatus Subscription

Entry Status

Or

Optional

This attribute might be contained if

the subscription entry status of the

addressed resource has changed.

mandateStatus Mandate Status Or

optional}

This attribute might be contained if

the mandate status of the

addressed resource has changed.

scaStatus SCA Status Optional This attribute might be contained if

the authorisation status of the

addressed authorisation resource

has changed.

requestStatus Request Status Optional The status of the related request to

pay transaction. To be delivered by

the API Server if not agreed

otherwise.

reasonCode Status Reason

Code

{Or

Optional

Additional information on the

reason for e.g. rejecting the request

reasonProprietary Max35Text Or

Optional}

Proprietary additional information

on the reason for e.g. rejecting the

request.

debtorDecision

DateTime

ISO Date Time Optional The date and time when the PSU

has decided on accepting/rejecting

the related request.

acceptedAmount Amount Optional Contained only if the accepted

amount deviates from the

instructed amount.

acceptanceDateTime ISODateTime Optional Contained only if the agreed

requested execution date deviates

from the requested execution date

in the request.

acceptedPaymentInstrument Max105Text Optional “SCT” or “SCT inst” as default

values.

statusIdentification Max35Text Optional Reference added by the debtor.

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 143

 (ref. License Notice for full license conditions)

Attribute Type Condition Description

_links Links Optional The following link types are

supported.

 scaStatus

This shall be contained if the

related SCA status is not reported

at the same time by the scaStatus

attribute. The API Client then needs

to get the scaStatus by a GET

command using this hyperlink.

 status

This shall be contained if the

related consent or transaction

status is not reported at the same

time. The API Client then needs to

get the resource status by a GET

command using this hyperlink.

HTTP Response Code

200

Remark: All response codes which do not equal 200 are ignored by the ASPSP. The

notification will not be repeated.

Response Header

Attribute Type Condition Description

X-Request-ID UUID Mandatory ID of the corresponding request, unique to the

call, as determined by the initiating party.

Response Body

No Response Body

Example
Request

POST https://notifications.testclient.com/v2/transaction-12345

Content-Type: application/json

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:02:37 GMT

{

 "paymentId": "3d9a81b3-a47d-4130-8765-a9c0ff861100",

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 144

 (ref. License Notice for full license conditions)

 "transactionStatus": "ACFC"

}

Response

HTTP/1.x 200

Content-Type: application/json

X-Request-ID: 99391c7e-ad88-49ec-a2ad-99ddcb1f7721

Date: Sun, 06 Aug 2017 15:04:08 GMT

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 145

 (ref. License Notice for full license conditions)

12 Annex

12.1 List of tables

TABLE 1: HEADER PARAMETERS FOR HTTP MESSAGE SIGNATURE ACCORDING TO [OBESIGN].

 .. 34

TABLE 2: ELEMENTS OF THE JSON WEB SIGNATURE ACCORDING TO [OBESIGN]. 36

TABLE 3: ELEMENTS OF THE JWS PROTECTED HEADER ACCORDING TO [OBESIGN]. 39

TABLE 4: HEADER PARAMETERS TO INDICATE THAT (PARTS OF) THE BODY HAVE BEEN SIGNED.

 .. 47

TABLE 5: SUPPORTED SIGNATURE PROFILES. .. 47

TABLE 6: ELEMENTS OF A SIGNED XML MESSAGE BODY. ... 48

TABLE 7: CONTENT OF THE ELEMENT MANIFEST. ... 49

TABLE 8: CONTENT OF A SINGLE SIGNATURE ELEMENT .. 50

TABLE 9: CONTENT OF THE ELEMENT SIGNEDPROPERTIES .. 50

TABLE 10: CONTENT OF THE ELEMENT SIGNEDINFO... 51

TABLE 11: CONTENT OF THE ELEMENT KEYINFO ... 52

TABLE 12: HEADER PARAMETERS TO INDICATE THE ENCRYPTION OF (PARTS OF) THE BODY. 54

TABLE 13: JSON STRUCTURE OF A JWE PROTECTED HEADER. .. 57

TABLE 14: ELEMENTS OF AN ENCRYPTED XML MESSAGE BODY ... 58

TABLE 15: ELEMENTS OF AN ENCRYPTED XML ELEMENT WITH TAG ELEMENTTAG 59

12.2 References

12.2.1 Documents of the NextGenPSD2 XS2A Framework

[XS2A-SecB] NextGenPSD2 XS2A Framework, Security Bulletin, Version 1.1, 30 October

2020

12.2.2 Documents of the openFinance API Framework

 [oFA DD] openFinance API Framework, Data Dictionary for V2.x, Version 2.2, 31 July

2024

[oFA-IG-ADM] openFinance API Framework, Implementation Guidelines for Administrative

Service, Version 1.0, 21 February 2024

12.2.3 Further documents

[EBA-FR] Final Report, Draft Regulatory Technical Standards, amending Commission

Delegated Regulation (EU) 2018/389 supplementing Directive (EU) 2015/2366

of the European Parliament and of the Council with regard to regulatory

technical standards for strong customer authentication and common and

secure open standards of communication, published 5 April 2022

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 146

 (ref. License Notice for full license conditions)

[EBA-OP2] Opinion of the European Banking Authority on obstacles under Article 32(3) of

the RTS on SCA and CSC, EBA/OP/2020/10, published 4 June 2020

[EBA-RTS] Commission Delegated Regulation (EU) 2018/389 of 27 November 2017

supplementing Directive 2015/2366 of the European Parliament and of the

Council with regard to Regulatory Technical Standards for Strong Customer

Authentication and Common and Secure Open Standards of Communication,

C(2017) 7782 final, published 13 March 2018

[eIDAS] Regulation (EU) No 910/2014 of the European Parliament and of the Council

on Electronic Identification and Trust Services for Electronic Transactions in the

Internal Market, 23 July 2014, published 28 August 2014

[ETSI EN 319 132-1] ETSI European Standard, Electronic Signatures and Infrastructures

(ESI); XAdES digital signatures; Part 1: Building blocks and XAdES baseline

signatures, V1.1.1 (2016-04)

[ETSI TS 119 182-1] ETSI Technical Specification, Electronic Signatures and Infrastructures

(ESI); JAdES digital signatures; Part 1: Building blocks and JAdES baseline

signatures, V1.2.1 (2022-02)

[ETSI TS 119 495] ETSI Technical Specification, Electronic Signatures and Infrastructures

(ESI); Sector Specific Requirements; Certificate Profiles and TSP Policy

Requirements for Open Banking, V1.5.1 (2021-04)

[FAPI-CBPIA] OpenID Foundation, Financial-grade API (FAPI) Working Group, Cross-

Browser Payment Initiation Attack,

https://bitbucket.org/openid/fapi/src/master/TR-Cross_browser_payment_initiation_attack.md,

3.01.2019

[GCMencryp] D.A. McGrew, J. Viega, The Galois/Counter Mode of Operation (GCM),

https://luca-giuzzi.unibs.it/corsi/Support/papers-cryptography/gcm-spec.pdf

[HAL] Kelley, M., "HAL - Hypertext Application Language", 2013-09-18,

http://stateless.co/hal_specification.html

[OA-SecTop] OAuth 2.0 Security Best Current Practice draft-ietf-oauth-security-topics-13,

Lodderstedt et al., 8 July 2019, https://tools.ietf.org/html/draft-ietf-oauth-

security-topics-13

[OBEsign] Open Banking Europe: JSON Web Signature Profile for Open Banking,

Version 001-001, 18.05.2021,

https://www.openbankingeurope.eu/media/2095/obe-json-web-signature-

profile-for-open-banking.pdf

[PSD2] Directive (EU) 2015/2366 of the European Parliament and of the Council on

payment services in the internal market, published 23 December 2015

[RFC2426] Dawson, F. and T. Howes, T., "vCard MIME Directory Profile", September

1998, https://tools.ietf.org/html/rfc2426

https://luca-giuzzi.unibs.it/corsi/Support/papers-cryptography/gcm-spec.pdf
http://stateless.co/hal_specification.html
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-13
https://www.openbankingeurope.eu/media/2095/obe-json-web-signature-profile-for-open-banking.pdf
https://www.openbankingeurope.eu/media/2095/obe-json-web-signature-profile-for-open-banking.pdf

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 147

 (ref. License Notice for full license conditions)

[RFC3230] Mogul, J. and A. Van Hoff, "Instance Digests in HTTP", RFC 3230, DOI

10.17487/RFC3230, January 2002,https://www.rfc-editor.org/info/rfc3230

[RFC3986] T. Berners-Lee, R. Fielding and L. Masinter, "Uniform Resource Identifier (URI):

Generic Syntax", RFC 3986, January 2005, https://tools.ietf.org/html/rfc3986

 [RFC4648] Josefsson, S.," The Base16, Base32, and Base64 Data Encodings", October

2006, https://tools.ietf.org/html/rfc4648

[RFC5280] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile, May 2008, https://datatracker.ietf.org/doc/html/rfc5280

[RFC5843] Bryan, A, "Additional Hash Algorithms for HTTP Instance Digests", RFC 5843,

DOI 10.17487/RFC5843, April 2010, https://www.rfc-editor.org/info/rfc5843

[RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", October 2012,

https://tools.ietf.org/html/rfc6749

[RFC6901] Bryan, P., Nottingham, M., "JavaScript Object Notation (JSON) Pointer", April

2013, https://tools.ietf.org/html/rfc6901

[RFC7231] R. Fielding, J. Reschke, Hypertext Transfer Protocol (HTTP/1.1): Semantics

and Content

[RFC7515] Jones, Bradley, Sakimura, "JSON Web Signatures (JWS)", May 2015,

https://datatracker.ietf.org/doc/rfc7515/

[RFC7516] Jones, Hildebrand: "JSON Web Encryption (JWE)", May 2015,

https://datatracker.ietf.org/doc/rfc7516/

[RFC7518] Jones, "JSON Web Algorithms (JWA)", May 2015,

https://datatracker.ietf.org/doc/rfc7518/

[RFC7519] Jones, Bradley, Sakimura: "JSON Web Token (JWT), May 2015,

https://datatracker.ietf.org/doc/html/rfc7519

[RFC 7797] Jones, "JSON Web Signature (JWS) Unencoded Payload Option", February

2016, https://datatracker.ietf.org/doc/rfc7797/

[RFC7807] M. Nottingham, Akamai, E. Wilde, „Problem Details for HTTP APIs“, March

2016, https://tools.ietf.org/html/rfc7807

[RFC 8414] M. Jones, N. Sakimura, J. Bradley; "OAuth 2.0 Authorization Server Metadata";

June 2018, https://www.rfc-editor.org/rfc/rfc8414.html

[RFC 8705] B. Campbell, J. Bradley, N. Sakimura; "OAuth 2.0 Mutual-TLS Client

Authentication and Certificate-Bound Access Tokens"; February 2020,

[RFC9457] M. Nottingham, E. Wilde, S. Dalal, "Problem Details for HTTP APIs", July2023,

https://www.rfc-editor.org/rfc/rfc9457.html

https://www.rfc-editor.org/info/rfc3230
https://tools.ietf.org/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5843
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6901
https://datatracker.ietf.org/doc/rfc7515/
https://datatracker.ietf.org/doc/rfc7516/
https://datatracker.ietf.org/doc/rfc7518/
https://datatracker.ietf.org/doc/rfc7797/
https://tools.ietf.org/html/rfc7807
https://www.rfc-editor.org/rfc/rfc8414.html

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 148

 (ref. License Notice for full license conditions)

[XML ENC] W3C Recommendation: "XML Encryption Syntax and Processing, Version 1.1,

11 April 2013

[W3C XMLSig] W3C Recommendation: "XML Signature and Processing",

Version 1.1, 11 April 2013

[W3C XMLSig V2] W3C Recommendation: "XML Signature and Processing",

Version 2.0, 23 July 2015

12.3 Detailed Change Log

12.3.1 Changes from Version 2.0 to 2.1

The following changes have been applied in version 2.1 relative to version 2.0:

Section Change Reason

3.5 Idempotency requirements have

been weakened.

Following general web idempotency

recommendations, the requirements on

idempotency have been weakened,

since strict idempotency is difficult to be

handled. (CR116)

4.2.2 The attribute "path" has been re-

named to "instance" for error

messaging following [RFC7807]

and explicitly extended for "status"

to repeat the http response code

on application level.

Erratum

4.2.2 A note was added, that the new

standard [RFC9457] for http

problem reports might be used

instead of the older [RFC7807].

This is a new issue and might still

be changed during the consultation

of the document.

New standard for error reporting.

5.3 Rename TPP-Redirect-URI to

Client-Redirect-URI

Rename TPP-Nok-Redirect-URI to

Client-Nok-URI

Make these parameters also usable for

direct access models for corporates.

Prepare the API Framework better for

corporate direct access.

6.2 Clarifications and extensions to

message signing:

Adding the attributes typ and aud

for the JWS protected header,

Secure parts of the path, which contains

important references related to the

transaction to be secured. (CR 112)

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 149

 (ref. License Notice for full license conditions)

Section Change Reason

clarifications on the alg attribute,

adding api-contract-id to the sigD

attribute.

Extending existing examples

6.2.2.2 Reference to certificate in TPP-

Signature-Certificate deleted,

since this header is not any more

supported.

Erratum

8.3 Restricting the length of PSU

related attributes in the http

headers

Clarifications of string length supported

for some http headers.

8.4.1, 9.4 Rename TPP-SCA-Preference to

Client-SCA-Preference.

Rename TPP-Explicit-

Authorisation-Preferred to Client-

Explicit-Authorisation-Preferred

Make these parameters also usable for

direct access models for corporates.

Prepare the API Framework better for

corporate direct access.

8.4.2, 9.4, Add the value ASPSP-CHANNEL

to the ASPSP-SCA-APPROACH

header.

Adding asynchronous SCA via ASPSP

channels explicitly to the Framework

resulting from new services, see below.

8.8.1 Adding "MAN:<resourceId>" as a

scope standard for the OAuth2

based authorisation.

Preparation of the API Framework to

support mandate authorisation.

New

Section 8.9

Adding a section for introducing

the ASPSP-Channel SCA

approach (for premium services)

Resulting from new services (Mandate

Services) where also an asynchronous

authorisation by the PSU via ASPSP

online channels is explicitly supported.

9.4.2 Add fee structures to the response

as optional attributes.

Erratum.

9.4.3 Extend the response by the option

to add directly an account list to

select an IBAN from and a related

hyperlink. This is an optimised

solution to provide "No manual

IBAN entry" for the embedded SCA

approach as well potentially for the

decoupled SCA approach.

A remark was added that the status

of the related payment resource

CR113

Security Measures supported by XS2A and openFinance API Contents

Published by the Berlin Group under Creative Commons Attribution-NoDerivatives 4.0 International Public License Page 150

 (ref. License Notice for full license conditions)

Section Change Reason

will be transposed to "PNDG" to

make clear on the resource level,

that resource data needs to be

pushed before further

authorisation steps can be applied.

9.7, 10.2 Rename tppMessages to

apClientMessages.

Erratum

New

Section 9.9

Add an access method, to post a

debtor account to a payment

related resource after the selection

of an IBAN after having submitted

a password e.g. in the embedded

SCA approach, see above.

CR113

10.2 Add mandateResourceIds to the

body of the signing basket as an

additional attribute class, which

can be referred to.

New Mandate API Service needs an

extension to the signing basket

definition.

10.3 Add mandateResourceIds to the

response body of the retrieval of a

signing basket resource.

Correct all data types string to

Max70Text

New Mandate API Service needs an

extension to the signing basket

definition.

11.6 Add mandateStatus as attribute for

pushing status changes

New Mandate API Service needs an

extension to the resource status

notification function.

11.6 Change all data types of resource

identification from String to

Max70Text

Erratum

